1
|
García-Corona JL, Fabioux C, Hégaret H. The queen scallop Aequipecten opercularis: A slow domoic acid depurator? HARMFUL ALGAE 2024; 138:102708. [PMID: 39244226 DOI: 10.1016/j.hal.2024.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Domoic acid (DA) is a dangerous phycotoxin produced by several strains of diatoms of the genus Pseudo-nitzschia, and responsible for Amnesic Shellfish Poisoning (ASP) in humans. The increasingly intense ASP-outbreaks along the English Channel over the last three decades have forced persistent harvest closures of economically important and highly contaminated bivalve stocks exhibiting slow DA-depuration rates, like the king scallop Pecten maximus. Under this scenario, other pectinid species, such as the queen scallop Aequipecten opercularis have been empirically proposed as alternative resources to redress the high economic losses due to the banning of the exploitation of P. maximus. Nevertheless, the kinetics of DA depuration in A. opercularis have not been assessed so far, and its direct extraction after ASP-episodes could represent a serious threat to public health. Hence, the main objective of this work was to estimate the DA-depuration rate in the digestive gland (DG) of naturally contaminated scallops A. opercularis after a toxic Pseudo-nitzschia australis bloom subjected to experimental depuration in the laboratory for 30 days. This study also intended to go further in the knowledge about the anatomical distribution of DA in scallop tissues, and corroborate the implications of autophagy in DA-sequestration in the DG of this species as recently hypothesized. In the DG, the DA-depuration rate (0.018 day-1) suggested that even with toxin burdens as low as 40 mg⋅kg-1 in the DG, queen scallops may remain contaminated for about 70 days, thus longer under intensely contamination scenarios. The subcellular analyses corroborated DA-sequestration mainly through late-autophagy within residual bodies in the DG, without differences in the frequencies of anti-DA labeled residual bodies across the entire depuration process. These results revealed that A. opercularis cannot be considered a fast DA-depurator, and represent a baseline knowledge for decision-making about harvesting natural beds of queen scallops after toxic Pseudo-nitzschia blooms. The findings of this work also represent a cornerstone for further research to accelerate DA-depuration in this species.
Collapse
Affiliation(s)
- José Luis García-Corona
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, Rue Dumont d'Urville, Technopộle Brest-Iroise, Plouzané 29280, France
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, Rue Dumont d'Urville, Technopộle Brest-Iroise, Plouzané 29280, France
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 LEMAR (UBO/CNRS/IRD/Ifremer). Institut Universitaire Européen de la Mer, Rue Dumont d'Urville, Technopộle Brest-Iroise, Plouzané 29280, France.
| |
Collapse
|
2
|
García-Corona JL, Fabioux C, Vanmaldergem J, Petek S, Derrien A, Terre-Terrillon A, Bressolier L, Breton F, Hegaret H. The amnesic shellfish poisoning toxin, domoic acid: The tattoo of the king scallop Pecten maximus. HARMFUL ALGAE 2024; 133:102607. [PMID: 38485441 DOI: 10.1016/j.hal.2024.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Domoic acid (DA) is a potent neurotoxin produced by diatoms of the genus Pseudo-nitzschia and is responsible for Amnesic Shellfish Poisoning (ASP) in humans. Some fishery resources of high commercial value, such as the king scallop Pecten maximus, are frequently exposed to toxic Pseudo-nitzschia blooms and are capable of accumulating high amounts of DA, retaining it for months or even a few years. This poses a serious threat to public health and a continuous economical risk due to fishing closures of this resource in the affected areas. Recently, it was hypothesized that trapping of DA within autophagosomic-vesicles could be one reason explaining the long retention of the remaining toxin in P. maximus digestive gland. To test this idea, we follow the kinetics of the subcellular localization of DA in the digestive glands of P. maximus during (a) the contamination process - with sequential samplings of scallops reared in the field during 234 days and naturally exposed to blooms of DA-producing Pseudo-nitzschia australis, and (b) the decontamination process - where highly contaminated scallops were collected after a natural bloom of toxic P. australis and subjected to DA-depuration in the laboratory for 60 days. In the digestive gland, DA-depuration rate (0.001 day-1) was much slower than contamination kinetics. The subcellular analyses revealed a direct implication of early autophagy in DA sequestration throughout contamination (r = 0.8, P < 0.05), while the presence of DA-labeled residual bodies (late autophagy) appeared to be strongly and significantly related to slow DA-depuration (r = -0.5) resembling an analogous DA-tattooing in the digestive glands of P. maximus. This work provides new evidence about the potential physiological mechanisms involved in the long retention of DA in P. maximus and represents the baseline to explore procedures to accelerate decontamination in this species.
Collapse
Affiliation(s)
- José Luis García-Corona
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Jean Vanmaldergem
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Sylvain Petek
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Amélie Derrien
- Littoral Ler Bo, Ifremer, Station de Biologie Marine, Place de la Croix, BP40537, Concarneau 29900 CEDEX, France
| | - Aouregan Terre-Terrillon
- Littoral Ler Bo, Ifremer, Station de Biologie Marine, Place de la Croix, BP40537, Concarneau 29900 CEDEX, France
| | - Laura Bressolier
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France
| | - Florian Breton
- Écloserie du Tinduff, 148 rue de l'écloserie, Port du Tinduff, Plougastel-Daoulas 29470, France
| | - Hélène Hegaret
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, UMR 6539 LEMAR UBO, CNRS, IRD, Ifremer, Plouzané F-29280, France.
| |
Collapse
|
3
|
Residue Analysis and Assessment of the Risk of Dietary Exposure to Domoic Acid in Shellfish from the Coastal Areas of China. Toxins (Basel) 2022; 14:toxins14120862. [PMID: 36548759 PMCID: PMC9783215 DOI: 10.3390/toxins14120862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Harmful algal blooms in Chinese waters have caused serious domoic acid (DA) contamination in shellfish. Although shellfish are at particular risk of dietary exposure to DA, there have been no systematic DA risk assessments in Chinese coastal waters. A total of 451 shellfish samples were collected from March to November 2020. The presence of DA and four of its isomers were detected using liquid chromatography-tandem mass spectrometry. The spatial-temporal distribution of DA occurrence and its potential health risks were examined. DA was detected in 198 shellfish samples (43.90%), with a maximum level of 942.86 μg/kg. DA was recorded in all 14 shellfish species tested and Pacific oysters (Crassostrea gigas) showed the highest average DA concentration (82.36 μg/kg). The DA concentrations in shellfish showed distinct spatial-temporal variations, with significantly higher levels of occurrence in autumn than in summer and spring (p < 0.01), and particularly high occurrence in Guangdong and Fujian Provinces. The detection rates and maximum concentrations of the four DA isomers were low. While C. gigas from Guangdong Province in September showed the highest levels of DA contamination, the risk to human consumers was low. This study improves our understanding of the potential risk of shellfish exposure to DA-residues.
Collapse
|