1
|
Liu D, Liu C, Deng F, Ouyang F, Qin R, Zhai Z, Wang Y, Zhang Y, Liao M, Pan X, Huang Y, Cen Y, Li X, Zhou H. Artesunate protects against a mouse model of cerulein and lipopolysaccharide‑induced acute pancreatitis by inhibiting TLR4‑dependent autophagy. Int J Mol Med 2025; 55:25. [PMID: 39635846 PMCID: PMC11637502 DOI: 10.3892/ijmm.2024.5466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Severe acute pancreatitis (SAP) is a severe clinical condition associated with high rates of morbidity and mortality. Multiple organ dysfunction syndrome that follows systemic inflammatory response syndrome is the leading cause of SAP‑related death. Since the inflammatory mechanism of SAP remains unclear, there is currently a lack of effective drugs available for its treatment. Therefore, it is important to study effective therapeutic drugs and their molecular mechanisms based on studying the inflammatory mechanism of SAP. In the present study, in vivo, a mouse model of AP induced by cerulein (CR) combined with lipopolysaccharide (LPS) was established to clarify the therapeutic effect of artesunate (AS) in AP mice by observing the gross morphological changes of the pancreas and surrounding tissues, calculating the pancreatic coefficient, and observing the histopathology of the pancreas. The serum amylase activity in AP mice was detected by iodine colorimetry and the superoxide dismutase activity in the pancreas was detected by WST‑1 assay. The levels of proinflammatory cytokines in the serum, the supernatant of pancreatic tissue homogenates and the peritoneal lavage fluid were detected by ELISA assay. The total number of peritoneal macrophages was assessed using the cellular automatic counter, and the expression of proteins related to autophagy, and the TLR4 pathway was detected by immunohistochemistry and western blotting. In vitro, the effect of trypsin (TP) combined with LPS was observed by detecting the release of proinflammatory cytokine levels from macrophages by ELISA assay, and detecting the expression of proteins related to autophagy and the TLR4 pathway by immunofluorescence and western blotting. The present study revealed that AS reduced pancreatic histopathological damage, decreased pancreatic TP and serum amylase activities, increased superoxide dismutase activity, and inhibited pro‑inflammatory cytokine levels in a mouse model of AP induced by cerulein combined with lipopolysaccharide. In vitro, TP combined with LPS was found to synergistically induce pro‑inflammatory cytokine release from mouse macrophages and RAW264.7 cells, while AS could inhibit cytokine release. Furthermore, CR combined with LPS synergistically increased amylase activity in acinar cells, whereas AS decreased amylase activity. Autophagy serves an important role in the release of pro‑inflammatory cytokines. In the present study, it was revealed that the autophagy inhibitor LY294002 suppressed the release of pro‑inflammatory cytokines from macrophages treated with TP combined with LPS, and pro‑inflammatory cytokine release was not further reduced by AS combined with LY294002. Furthermore, AS not only inhibited the expression of important molecules in the Toll‑like receptor 4 (TLR4) signaling pathway, but also inhibited autophagy proteins and reduced the number of autolysosomes in mice with AP and in macrophages. In conclusion, these results suggested that AS may protect against AP in mice via inhibition of TLR4‑dependent autophagy; therefore, AS may be considered a potential therapeutic agent against SAP.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chao Liu
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Fei Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Fumin Ouyang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Rongxin Qin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Zhaoxia Zhai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yu Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Mengling Liao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xichun Pan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Yasi Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yanyan Cen
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Wu W, Zhu L, Dou Z, Hou Q, Wang S, Yuan Z, Li B. Ghrelin in Focus: Dissecting Its Critical Roles in Gastrointestinal Pathologies and Therapies. Curr Issues Mol Biol 2024; 46:948-964. [PMID: 38275675 PMCID: PMC10813987 DOI: 10.3390/cimb46010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This review elucidates the critical role of ghrelin, a peptide hormone mainly synthesized in the stomach in various gastrointestinal (GI) diseases. Ghrelin participates in diverse biological functions ranging from appetite regulation to impacting autophagy and apoptosis. In sepsis, it reduces intestinal barrier damage by inhibiting inflammatory responses, enhancing GI blood flow, and modulating cellular processes like autophagy and apoptosis. Notably, in inflammatory bowel disease (IBD), serum ghrelin levels serve as markers for distinguishing between active and remission phases, underscoring its potential in IBD treatment. In gastric cancer, ghrelin acts as an early risk marker, and due to its significant role in increasing the proliferation and migration of gastric cancer cells, the ghrelin-GHS-R axis is poised to become a target for gastric cancer treatment. The role of ghrelin in colorectal cancer (CRC) remains controversial; however, ghrelin analogs have demonstrated substantial benefits in treating cachexia associated with CRC, highlighting the therapeutic potential of ghrelin. Nonetheless, the complex interplay between ghrelin's protective and potential tumorigenic effects necessitates a cautious approach to its therapeutic application. In post-GI surgery scenarios, ghrelin and its analogs could be instrumental in enhancing recovery and reducing complications. This article accentuates ghrelin's multifunctionality, shedding light on its influence on disease mechanisms, including inflammatory responses and cancer progression, and examines its therapeutic potential in GI surgeries and disorders, advocating for continued research in this evolving field.
Collapse
Affiliation(s)
- Wei Wu
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Lei Zhu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Zhimin Dou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Qiliang Hou
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Sen Wang
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Ziqian Yuan
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Bin Li
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| |
Collapse
|
3
|
An J, Jiang T, Qi L, Xie K. Acinar cells and the development of pancreatic fibrosis. Cytokine Growth Factor Rev 2023; 71-72:40-53. [PMID: 37291030 DOI: 10.1016/j.cytogfr.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
Pancreatic fibrosis is caused by excessive deposition of extracellular matrixes of collagen and fibronectin in the pancreatic tissue as a result of repeated injury often seen in patients with chronic pancreatic diseases. The most common causative conditions include inborn errors of metabolism, chemical toxicity and autoimmune disorders. Its pathophysiology is highly complex, including acinar cell injury, acinar stress response, duct dysfunction, pancreatic stellate cell activation, and persistent inflammatory response. However, the specific mechanism remains to be fully clarified. Although the current therapeutic strategies targeting pancreatic stellate cells show good efficacy in cell culture and animal models, they are not satisfactory in the clinic. Without effective intervention, pancreatic fibrosis can promote the transformation from pancreatitis to pancreatic cancer, one of the most lethal malignancies. In the normal pancreas, the acinar component accounts for 82% of the exocrine tissue. Abnormal acinar cells may activate pancreatic stellate cells directly as cellular source of fibrosis or indirectly via releasing various substances and initiate pancreatic fibrosis. A comprehensive understanding of the role of acinar cells in pancreatic fibrosis is critical for designing effective intervention strategies. In this review, we focus on the role of and mechanisms underlying pancreatic acinar injury in pancreatic fibrosis and their potential clinical significance.
Collapse
Affiliation(s)
- Jianhong An
- SCUT-QMPH Joint Laboratory for Pancreatic Cancer Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China; Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Ling Qi
- SCUT-QMPH Joint Laboratory for Pancreatic Cancer Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China.
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
4
|
Ma Y, Zhang H, Guo W, Yu L. Potential role of ghrelin in the regulation of inflammation. FASEB J 2022; 36:e22508. [PMID: 35983825 DOI: 10.1096/fj.202200634r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Several diseases are caused or progress due to inflammation. In the past few years, accumulating evidence suggests that ghrelin, a gastric hormone of 28-amino acid residue length, exerts protective effects against inflammation by modulating the related pathways. This review focuses on ghrelin's anti-inflammatory and potential therapeutic effects in neurological, cardiovascular, respiratory, hepatic, gastrointestinal, and kidney disorders. Ghrelin significantly alleviates excessive inflammation and reduces damage to different target organs mainly by reducing the secretion of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and inhibiting the nuclear factor kappa-B (NF-κB) and NLRP3 inflammasome signaling pathways. Ghrelin also regulates inflammation and apoptosis through the p38 MAPK/c-Jun N-terminal kinase (JNK) signaling pathway; restores cerebral microvascular integrity, and attenuates vascular leakage. Ghrelin activates the phosphoInositide-3 kinase (PI3K)/protein kinase B (Akt) pathway and inhibits inflammatory responses in cardiovascular diseases and acute kidney injury. Some studies show that ghrelin exacerbates colonic and intestinal manifestations of colitis. Interestingly, some inflammatory states, such as non-alcoholic steatohepatitis, inflammatory bowel diseases, and chronic kidney disease, are often associated with high ghrelin levels. Thus, ghrelin may be a potential new therapeutic target for inflammation-related diseases.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haifeng Zhang
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Department of Interventional Therapy of First Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Oxycodone Alleviates Endometrial Injury via the TLR4/NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6153279. [PMID: 35310024 PMCID: PMC8933090 DOI: 10.1155/2022/6153279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Endometrial injury is a common female disease. This study was designed to illustrate the effects of oxycodone on mifepristone-induced human endometrial stromal cells (hEndoSCs) injury and delineate the underlying molecular mechanism. hEndoSCs were stimulated with mifepristone to generate the endometrial injury in vitro model. hEndoSCs viability, cytotoxicity, and apoptosis were measured by methyl thiazolyl tetrazolium (MTT) assay, lactate dehydrogenase assay (LDH), and flow cytometry (FCM) analysis, respectively. Meanwhile, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot assay were conducted to evaluate gene and protein expressions. The secretions of inflammatory cytokines (TNF-α, IL-1β, and IL-6) were measured using enzyme-linked immunosorbent assay (ELISA). The data revealed that mifepristone exposure memorably inhibited hEndoSCs viability and promoted cell apoptosis and inflammatory cytokines secretion, and oxycodone had no cytotoxicity on hEndoSCs. Oxycodone increased hEndoSCs growth, blocked cell apoptosis, enhanced Bcl-2 expression, reduced Bax levels, and decreased the secretion of inflammatory cytokines in mifepristone-induced hEndoSCs, exhibiting the protective effects in endometrial injury. In addition, the TLR4/NF-κB pathway-related protein levels (TLR4 and p-p65) in mifepristone-treated hEndoSCs were enhanced, while these enhancements were inhibited by oxycodone treatment. In conclusion, oxycodone exhibited the protective role in mifepristone-triggered endometrial injury via inhibiting the TLR4/NF-κB signal pathway.
Collapse
|
6
|
Protective and Healing Effects of Ghrelin and Risk of Cancer in the Digestive System. Int J Mol Sci 2021; 22:ijms221910571. [PMID: 34638910 PMCID: PMC8509076 DOI: 10.3390/ijms221910571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
Ghrelin is an endogenous ligand for the ghrelin receptor, previously known as the growth hormone secretagogue receptor. This hormone is mainly produced by endocrine cells present in the gastric mucosa. The ghrelin-producing cells are also present in other organs of the body, mainly in the digestive system, but in much smaller amount. Ghrelin exhibits a broad spectrum of physiological effects, such as stimulation of growth hormone secretion, gastric secretion, gastrointestinal motility, and food intake, as well as regulation of glucose homeostasis and bone formation, and inhibition of inflammatory processes. This review summarizes the recent findings concerning animal and human data showing protective and therapeutic effects of ghrelin in the gut, and also presents the role of growth hormone and insulin-like growth factor-1 in these effects. In addition, the current data on the possible influence of ghrelin on the carcinogenesis, its importance in predicting the risk of developing gastrointestinal malignances, as well as the potential usefulness of ghrelin in the treatment of cancer, have been presented.
Collapse
|
7
|
Spiridon IA, Ciobanu DGA, Giușcă SE, Căruntu ID. Ghrelin and its role in gastrointestinal tract tumors (Review). Mol Med Rep 2021; 24:663. [PMID: 34296307 PMCID: PMC8335721 DOI: 10.3892/mmr.2021.12302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ghrelin, an orexigenic hormone, is a peptide that binds to the growth hormone secretagogue receptor; it is secreted mainly by enteroendocrine cells in the oxyntic glands of the stomach. Ghrelin serves a role in both local and systemic physiological processes, and is implicated in various pathologies, including neoplasia, with tissue expression in several types of malignancies in both in vitro and in vivo studies. However, the precise implications of the ghrelin axis in metastasis, invasion and cancer progression regulation has yet to be established. In the case of gastrointestinal (GI) tract malignancies, ghrelin has shown potential to become a prognostic factor or even a therapeutic target, although data in the literature are inconsistent and unsystematic, with reports untailored to a specific histological subtype of cancer or a particular localization. The evaluation of immunohistochemical expression shows a limited outlook owing to the low number of cases analyzed, and in vivo analyses have conflicting data regarding differences in ghrelin serum levels in patients with cancer. The aim of this review was to examine the relationship between ghrelin and GI tract malignancies to demonstrate the inconsistencies in current results and to highlight its clinical significance in the outcome of these patients.
Collapse
Affiliation(s)
- Irene Alexandra Spiridon
- Department of Pathology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| | | | - Simona Eliza Giușcă
- Department of Pathology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| | - Irina Draga Căruntu
- Department of Histology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| |
Collapse
|