1
|
Shu W, Song Y, Lin Z, Yang M, Pan B, Su R, Yang M, Lu Z, Zheng S, Xu X, Yang Z, Wei X. Evaluation of liver regeneration after hemi-hepatectomy by combining computed tomography and post-operative liver function. Heliyon 2024; 10:e30964. [PMID: 38803961 PMCID: PMC11128876 DOI: 10.1016/j.heliyon.2024.e30964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Background Accurate evaluation of postoperative liver regeneration is essential to prevent postoperative liver failure. Aims To analyze the predictors that affect liver regeneration after hemi-hepatectomy. Method Patients who underwent hemi-hepatectomy in Hangzhou First People's Hospital and Hangzhou Shulan Hospital from January 2016 to December 2021 were enrolled in this study. The regeneration index (RI) was calculated by the following equation: RI = [(postoperative total liver volume {TLVpost} - future liver remnant volume {FLRV}/FLRV] × 100 %. Hepatic dysfunction was defined according to the "TBilpeak>7" standard, which was interpreted as (peak) total bilirubin (TBil) >7.0 mg/dL. Good liver regeneration was defined solely when the RI surpassed the median with hepatic dysfunction. Logistic regression analyses were performed to estimate prognostic factors affecting liver regeneration. Result A total of 153 patients were enrolled, with 33 in the benign group and 120 patients in the malignant group. In the entire study population, FLRV% [OR 4.087 (1.405-11.889), P = 0.010], international normalized ratio (INR) [OR 2.763 (95%CI, 1.008-7.577), P = 0.048] and TBil [OR 2.592 (95%CI, 1.177-5.710), P = 0.018] were independent prognostic factors associated with liver regeneration. In the benign group, only the computed tomography (CT) parameter FLRV% [OR, 11.700 (95%CI, 1.265-108.200), P = 0.030] predicted regeneration. In the malignant group, parenchymal hepatic resection rate (PHRR%) [OR 0.141 (95%CI, 0.040-0.499), P = 0.002] and TBil [OR 3.384 (95%CI, 1.377-8.319), P = 0.008] were independent prognostic factors. Conclusion FLRV%, PHRR%, TBil and INR were predictive factors associated with liver regeneration.
Collapse
Affiliation(s)
- Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Yisu Song
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Mengfan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Binhua Pan
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Modan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shusen Zheng
- Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310022, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhe Yang
- Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310022, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| |
Collapse
|
2
|
Yao WF, Huang XK, Fu TW, Jin L, Du CF, Gao ZY, Wang KD, Dai MG, Liu SY, Liu JW, Zhang CW, Liang L, Huang DS. Precise planning based on 3D-printed dry-laboratory models can reduce perioperative complications of laparoscopic surgery for complex hepatobiliary diseases: a preoperative cohort study. BMC Surg 2024; 24:148. [PMID: 38734630 PMCID: PMC11088180 DOI: 10.1186/s12893-024-02441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND & AIMS Complications after laparoscopic liver resection (LLR) are important factors affecting the prognosis of patients, especially for complex hepatobiliary diseases. The present study aimed to evaluate the value of a three-dimensional (3D) printed dry-laboratory model in the precise planning of LLR for complex hepatobiliary diseases. METHODS Patients with complex hepatobiliary diseases who underwent LLR were preoperatively enrolled, and divided into two groups according to whether using a 3D-printed dry-laboratory model (3D vs. control group). Clinical variables were assessed and complications were graded by the Clavien-Dindo classification. The Comprehensive Complication Index (CCI) scores were calculated and compared for each patient. Multivariable analysis was performed to determine the risk factors of postoperative complications. RESULTS Sixty-two patients with complex hepatobiliary diseases underwent the precise planning of LLR. Among them, thirty-one patients acquired the guidance of a 3D-printed dry-laboratory model, and others were only guided by traditional enhanced CT or MRI. The results showed no significant differences between the two groups in baseline characters. However, compared to the control group, the 3D group had a lower incidence of intraoperative blood loss, as well as postoperative 30-day and major complications, especially bile leakage (all P < 0.05). The median score on the CCI was 20.9 (range 8.7-51.8) in the control group and 8.7 (range 8.7-43.4) in the 3D group (mean difference, -12.2, P = 0.004). Multivariable analysis showed the 3D model was an independent protective factor in decreasing postoperative complications. Subgroup analysis also showed that a 3D model could decrease postoperative complications, especially for bile leakage in patients with intrahepatic cholelithiasis. CONCLUSION The 3D-printed models can help reduce postoperative complications. The 3D-printed models should be recommended for patients with complex hepatobiliary diseases undergoing precise planning LLR.
Collapse
Affiliation(s)
- Wei-Feng Yao
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiao-Kun Huang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Postgraduate Training, Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tian-Wei Fu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of the Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Jin
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of the Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cheng-Fei Du
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of the Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhen-Yu Gao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Postgraduate Training, Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kai-Di Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of the Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mu-Gen Dai
- Department of Gastroenterology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Si-Yu Liu
- Department of Laboratory Medicine, The Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China
| | - Jun-Wei Liu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Cheng-Wu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lei Liang
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China.
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Dong-Sheng Huang
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China.
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Kennedy SM, K A, J JJB, V E, Rb JR. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. J Med Eng Technol 2024; 48:151-168. [PMID: 39282861 DOI: 10.1080/03091902.2024.2399017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 10/10/2024]
Abstract
This paper delves into the diverse applications and transformative impact of additive manufacturing (AM) in biomedical engineering. A detailed analysis of various AM technologies showcases their distinct capabilities and specific applications within the medical field. Special emphasis is placed on bioprinting of organs and tissues, a revolutionary area where AM has the potential to revolutionize organ transplantation and regenerative medicine by fabricating functional tissues and organs. The review further explores the customization of implants and prosthetics, demonstrating how tailored medical devices enhance patient comfort and performance. Additionally, the utility of AM in surgical planning is examined, highlighting how printed models contribute to increased surgical precision, reduced operating times, and minimized complications. The discussion extends to the 3D printing of surgical instruments, showcasing how these bespoke tools can improve surgical outcomes. Moreover, the integration of AM in drug delivery systems, including the development of innovative drug-loaded implants, underscores its potential to enhance therapeutic efficacy and reduce side effects. It also addresses personalized prosthetic implants, regulatory frameworks, biocompatibility concerns, and the future potential of AM in global health and sustainable practices.
Collapse
Affiliation(s)
- Senthil Maharaj Kennedy
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi, India
| | - Amudhan K
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
| | - Jerold John Britto J
- Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam, India
| | - Ezhilmaran V
- Department of Manufacturing Engineering, Anna University, Chennai, India
| | - Jeen Robert Rb
- Department of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, India
| |
Collapse
|
4
|
Kasturi M, Mathur V, Gadre M, Srinivasan V, Vasanthan KS. Three Dimensional Bioprinting for Hepatic Tissue Engineering: From In Vitro Models to Clinical Applications. Tissue Eng Regen Med 2024; 21:21-52. [PMID: 37882981 PMCID: PMC10764711 DOI: 10.1007/s13770-023-00576-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 10/27/2023] Open
Abstract
Fabrication of functional organs is the holy grail of tissue engineering and the possibilities of repairing a partial or complete liver to treat chronic liver disorders are discussed in this review. Liver is the largest gland in the human body and plays a responsible role in majority of metabolic function and processes. Chronic liver disease is one of the leading causes of death globally and the current treatment strategy of organ transplantation holds its own demerits. Hence there is a need to develop an in vitro liver model that mimics the native microenvironment. The developed model should be a reliable to understand the pathogenesis, screen drugs and assist to repair and replace the damaged liver. The three-dimensional bioprinting is a promising technology that recreates in vivo alike in vitro model for transplantation, which is the goal of tissue engineers. The technology has great potential due to its precise control and its ability to homogeneously distribute cells on all layers in a complex structure. This review gives an overview of liver tissue engineering with a special focus on 3D bioprinting and bioinks for liver disease modelling and drug screening.
Collapse
Affiliation(s)
- Meghana Kasturi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mrunmayi Gadre
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Tripke V, Sommer N. An update on liver surgery - a new terminology and modern techniques. Innov Surg Sci 2023; 8:197-201. [PMID: 38510365 PMCID: PMC10949114 DOI: 10.1515/iss-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/08/2023] [Indexed: 03/22/2024] Open
Abstract
Liver surgery is the cornerstone of the curative treatment of malignant liver tumors. However, the liver anatomy is very complex, and liver surgery is still associated with relevant morbidity despite many technical advances. The Brisbane nomenclature is used worldwide to classify liver resection. However, this nomenclature has several limitations as multiple terms are used for the same type of resection. Non-anatomical resections, multiple resections, and combined bilio-vascular resections were not mentioned. Therefore, new terminologies have been proposed for the precise and simple classification of liver resection. Furthermore, in recent years, many technical innovations have been introduced in liver surgery, such as 3D imaging systems and indocyanine green fluorescence, for better preoperative and intraoperative identification of tumor localization and critical vascular structures. Minimally invasive techniques are used more frequently in liver surgery. Potential benefits include less intraoperative blood loss, less pain, and a shorter hospital stay. The implementation of robotic systems also has an impact on liver surgery, and the number of cases reported in the literature is constantly increasing. The potential benefits of robotic liver resection over laparoscopic liver resection will be the subject of future studies.
Collapse
Affiliation(s)
- Verena Tripke
- Department of General, Visceral and Transplantation Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Chirurgische Arbeitsgemeinschaft Junge Chirurgie CAJC, Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie, Berlin, Germany
| | - Nils Sommer
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
- Chirurgische Arbeitsgemeinschaft Junge Chirurgie CAJC, Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie, Berlin, Germany
| |
Collapse
|
6
|
Husarova T, MacCuaig WM, Dennahy IS, Sanderson EJ, Edil BH, Jain A, Bonds MM, McNally MW, Menclova K, Pudil J, Zaruba P, Pohnan R, Henson CE, Grizzle WE, McNally LR. Intraoperative Imaging in Hepatopancreatobiliary Surgery. Cancers (Basel) 2023; 15:3694. [PMID: 37509355 PMCID: PMC10377919 DOI: 10.3390/cancers15143694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatopancreatobiliary surgery belongs to one of the most complex fields of general surgery. An intricate and vital anatomy is accompanied by difficult distinctions of tumors from fibrosis and inflammation; the identification of precise tumor margins; or small, even disappearing, lesions on currently available imaging. The routine implementation of ultrasound use shifted the possibilities in the operating room, yet more precision is necessary to achieve negative resection margins. Modalities utilizing fluorescent-compatible dyes have proven their role in hepatopancreatobiliary surgery, although this is not yet a routine practice, as there are many limitations. Modalities, such as photoacoustic imaging or 3D holograms, are emerging but are mostly limited to preclinical settings. There is a need to identify and develop an ideal contrast agent capable of differentiating between malignant and benign tissue and to report on the prognostic benefits of implemented intraoperative imaging in order to navigate clinical translation. This review focuses on existing and developing imaging modalities for intraoperative use, tailored to the needs of hepatopancreatobiliary cancers. We will also cover the application of these imaging techniques to theranostics to achieve combined diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Tereza Husarova
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - William M. MacCuaig
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Isabel S. Dennahy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Emma J. Sanderson
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Barish H. Edil
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Morgan M. Bonds
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Katerina Menclova
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Jiri Pudil
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Pavel Zaruba
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Radek Pohnan
- Department of Surgery, Military University Hospital Prague, 16902 Prague, Czech Republic
| | - Christina E. Henson
- Department of Radiation Oncology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Lerut J. Modern technology, liver surgery and transplantation. Hepatobiliary Pancreat Dis Int 2022; 21:307-309. [PMID: 35750600 DOI: 10.1016/j.hbpd.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Jan Lerut
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 1200, Brussels, Belgium.
| |
Collapse
|