1
|
Nesseler N, Mansour A, Cholley B, Coutance G, Bouglé A. Perioperative Management of Heart Transplantation: A Clinical Review. Anesthesiology 2023; 139:493-510. [PMID: 37458995 DOI: 10.1097/aln.0000000000004627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
In this clinical review, the authors summarize the perioperative management of heart transplant patients with a focus on hemodynamics, immunosuppressive strategies, hemostasis and hemorrage, and the prevention and treatment of infectious complications.
Collapse
Affiliation(s)
- Nicolas Nesseler
- Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, France; National Institute of Health and Medical Research, Center of Clinical Investigation, Nutrition, Metabolism, Cancer Mixed Research Unit, University Hospital Federation Survival Optimization in Organ Transplantation, Rennes, France
| | - Alexandre Mansour
- Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, France; National Institute of Health and Medical Research, Center of Clinical Investigation, Nutrition, Research Institute for Environmental and Occupational Health Mixed Research Unit, Rennes, France
| | - Bernard Cholley
- Department of Anesthesiology and Intensive Care Medicine, European Hospital Georges Pompidou, Public Hospitals of Paris, Paris, France; Paris Cité University, National Institute of Health and Medical Research Mixed Research Unit, Paris, France
| | - Guillaume Coutance
- Sorbonne University, Public Hospitals of Paris, Department of Cardiac and Thoracic Surgery, Cardiology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - Adrien Bouglé
- Sorbonne University, Clinical Research Group in Anesthesia, Resuscitation, and Perioperative Medicine, Public Hospitals of Paris, Department of Anesthesiology and Critical Care, Cardiology Institute, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
2
|
Al-Adhami A, Avtaar Singh SS, De SD, Singh R, Panjrath G, Shah A, Dalzell JR, Schroder J, Al-Attar N. Primary Graft Dysfunction after Heart Transplantation - Unravelling the Enigma. Curr Probl Cardiol 2021; 47:100941. [PMID: 34404551 DOI: 10.1016/j.cpcardiol.2021.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/03/2022]
Abstract
Primary graft dysfunction (PGD) remains the main cause of early mortality following heart transplantation despite several advances in donor preservation techniques and therapeutic strategies for PGD. With that aim of establishing the aetiopathogenesis of PGD and the preferred management strategies, the new consensus definition has paved the way for multiple contemporaneous studies to be undertaken and accurately compared. This review aims to provide a broad-based understanding of the pathophysiology, clinical presentation and management of PGD.
Collapse
Affiliation(s)
- Ahmed Al-Adhami
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow UK
| | - Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow UK; Institute of Cardiovascular and Medical Sciences (ICAMS), University of Glasgow.
| | - Sudeep Das De
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Ramesh Singh
- Mechanical Circulatory Support, Inova Health System, Falls Church, Virginia
| | - Gurusher Panjrath
- Heart Failure and Mechanical Circulatory Support Program, George Washington University Hospital, Washington, DC
| | - Amit Shah
- Advanced Heart Failure and Cardiac Transplant Unit, Fiona Stanley Hospital, Perth, Australia
| | - Jonathan R Dalzell
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, UK
| | - Jacob Schroder
- Heart Transplantation Program, Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC
| | - Nawwar Al-Attar
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow UK; Institute of Cardiovascular and Medical Sciences (ICAMS), University of Glasgow
| |
Collapse
|
3
|
Immohr MB, Akhyari P, Boettger C, Erbel S, Westenfeld R, Scheiber D, Tudorache I, Aubin H, Lichtenberg A, Boeken U. Levosimendan for Treatment of Primary Graft Dysfunction After Heart Transplantation: Optimal Timing of Application. EXP CLIN TRANSPLANT 2021; 19:473-480. [PMID: 33877035 DOI: 10.6002/ect.2020.0342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Primary graft dysfunction remains a serious problem after heart transplant. Pharmacological treatment with the calcium sensitizer levosimendan may be an additive treatment for primary graft dysfunction. MATERIALS AND METHODS Patients undergoing heart transplant between 2010 and 2020 were retrospectively reviewed and divided depending on postoperative treatment with (n = 41) or without (n = 109) levosimendan. Recipients who received levosi mendan were further divided with regard to timing of levosimendan application (early group: started ≤48 hours posttransplant [n = 23]; late group: started >48 hours posttransplant [n = 18]). RESULTS Patients who received levosimendan treatment displayed a remarkable incidence (87.8%) of postoperative primary graft dysfunction with need for venoarterial extracorporeal membrane oxygenation and therefore often presented with perioperative morbidity. Patient with early application of levosimendan showed significantly decreased duration of venoarterial extracorporeal membrane oxygenation support (5.1 ± 3.5 days vs 12.6 ± 9.3 days in those with late application; P < .01) and decreased mortality during venoarterial extracorporeal membrane oxygenation support (0.0% vs 33.3% in early vs late group; P < .01). In addition, compared with patients with late levosimendan application, patients with early application needed fewer blood transfusions (P < .05), had shorter ventilation times (279 ± 235 vs 428 ± 293 h; P = .03), and showed a trend of reduced incidence of postoperative renal failure (69.6% vs 94.4%; P = .06). Moreover, survival analyses indicated an increased survival for patients with early start of levosimendan therapy within the first 48 hours after heart transplant (P = .09). CONCLUSIONS Pharmacotherapy with levosimendan may be a promising additive in the treatment of primary graft dysfunction after heart transplant. With administration of levosimendan within the first 48 hours posttransplant, rates of successful weaning from venoarterial extracorporeal membrane oxygenation and outcomes after heart transplant were shown to increase.
Collapse
Affiliation(s)
- Moritz Benjamin Immohr
- From the Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Primary graft dysfunction (PGD) remains the leading cause of early mortality post-heart transplantation. Despite improvements in mechanical circulatory support and critical care measures, the rate of PGD remains significant. A recent consensus statement by the International Society of Heart and Lung Transplantation (ISHLT) has formulated a definition for PGD. Five years on, we look at current concepts and future directions of PGD in the current era of transplantation.
Collapse
Affiliation(s)
- Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, Scotland.
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland.
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland.
| | - Jonathan R Dalzell
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland
| | - Colin Berry
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Nawwar Al-Attar
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, Scotland
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
5
|
Subramani S, Aldrich A, Dwarakanath S, Sugawara A, Hanada S. Early Graft Dysfunction Following Heart Transplant: Prevention and Management. Semin Cardiothorac Vasc Anesth 2019; 24:24-33. [DOI: 10.1177/1089253219867694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heart transplant can be considered as the “gold standard” treatment for end-stage heart failure, with nearly 5.7 million adults in the United States carrying a diagnosis of heart failure. According to the International Society for Heart and Lung Transplantation registry, nearly 3300 orthotopic heart transplants were performed in 2016 in North America. In spite of significant improvements in overall perioperative care of heart transplant recipients for the past few decades, the risk of 30-day mortality remains 5% to 10%, primarily related to early failure of the allograft. Early graft dysfunction (EGD) occurs within 24 hours after transplant, manifesting as left ventricular dysfunction, right ventricular dysfunction, or biventricular dysfunction. EGD is further classified into primary and secondary graft dysfunction. This review focus on describing overall incidences of EGD, potential risk factors associated with EGD, perioperative preventive measures, and various management options.
Collapse
|
6
|
Shen T, Huh MH, Czer LS, Vaidya A, Esmailian F, Kobashigawa JA, Nurok M. Controversies in the Postoperative Management of the Critically Ill Heart Transplant Patient. Anesth Analg 2019; 129:1023-1033. [PMID: 31162160 DOI: 10.1213/ane.0000000000004220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Heart transplant recipients are susceptible to a number of complications in the immediate postoperative period. Despite advances in surgical techniques, mechanical circulatory support (MCS), and immunosuppression, evidence supporting optimal management strategies of the critically ill transplant patient is lacking on many fronts. This review identifies some of these controversies with the aim of stimulating further discussion and development into these gray areas.
Collapse
Affiliation(s)
- Tao Shen
- From the Departments of Anesthesiology.,Surgery, Cedars-Sinai Heart Institute, Los Angeles, California
| | | | - Lawrence S Czer
- Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California
| | - Ajay Vaidya
- Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California
| | | | - Jon A Kobashigawa
- Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California
| | - Michael Nurok
- From the Departments of Anesthesiology.,Surgery, Cedars-Sinai Heart Institute, Los Angeles, California
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Primary graft dysfunction (PGD) is common early postheart transplantation; however, use of standardized definitions remains inconsistent. This review focuses on understanding the incidence, classification, risk factors, and management of PGD. RECENT FINDINGS The incidence and mortality of PGD in heart transplant varies considerably in the published literature ranging from 1.0% to 31% and 3% to 75%, respectively. There is also considerable variation in management strategies with current data favoring early intervention. SUMMARY PGD in heart transplantation remains a challenging problem associated with significant mortality and morbidity. There is need for a consistent and accessible definition to better define associated risk factors and optimize management strategies.
Collapse
|
8
|
Beiras-Fernandez A, Kornberger A, Oberhoffer M, Kur F, Weis M, Vahl CF, Weis F. Levosimendan as rescue therapy in low output syndrome after cardiac surgery: effects and predictors of outcome. J Int Med Res 2019; 47:3502-3512. [PMID: 30909776 PMCID: PMC6726822 DOI: 10.1177/0300060519835087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Calcium sensitizers have been shown to improve outcomes in patients with low cardiac output syndrome (LCOS) after cardiac surgery. We assessed the effects of levosimendan on LCOS in cardiac surgical patients to identify outcome predictors. Methods A total of 106 patients in whom LCOS persisted despite conventional therapy additionally received 0.1 µg/kg/min of levosimendan for 24 hours according to a defined treatment algorithm. Baseline and treatment data as well as hemodynamic and outcome parameters were compared between survivors and nonsurvivors, and a multivariate correlation and regression tree analysis was implemented. Results The ejection fraction significantly increased from 27% ± 4% to 38% ± 8% within 24 hours and to 45% ± 10% within 48 hours of starting levosimendan. These changes were accompanied by a significant increase in cardiac output from 5.2 ± 0.6 to 6.2 ± 0.7 L/min within 24 hours and significant dose reductions in vasopressors and inotropes. In contrast to nonsurvivors, survivors’ need for inotropic support decreased after the addition of levosimendan to the therapy. Conclusion In our patients, all of whom were treated according to the same algorithm, the response to levosimendan in terms of the post-levosimendan need for inotropes and vasopressors predicted survival.
Collapse
Affiliation(s)
- Andres Beiras-Fernandez
- 1 Department of Cardiothoracic and Vascular Surgery, University Hospital Mainz, Mainz, Germany
| | - Angela Kornberger
- 1 Department of Cardiothoracic and Vascular Surgery, University Hospital Mainz, Mainz, Germany
| | - Martin Oberhoffer
- 1 Department of Cardiothoracic and Vascular Surgery, University Hospital Mainz, Mainz, Germany
| | - Felix Kur
- 2 Department of Cardiac Surgery, University Hospital Grosshadern, Munich, Germany
| | - Marion Weis
- 3 Department of Anaesthesiology, University Hospital Grosshadern, Munich, Germany
| | | | - Florian Weis
- 3 Department of Anaesthesiology, University Hospital Grosshadern, Munich, Germany
| |
Collapse
|
9
|
|
10
|
Knezevic I, Poglajen G, Hrovat E, Oman A, Pintar T, Wu JC, Vrtovec B, Haddad F. The effects of levosimendan on renal function early after heart transplantation: results from a pilot randomized trial. Clin Transplant 2014; 28:1105-11. [PMID: 25053182 DOI: 10.1111/ctr.12424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND We evaluated the effects of a levosimendan (LS)-based strategy compared with standard inotropic therapy on renal function in heart transplantation. METHODS AND RESULTS Using a randomized study design, 94 patients were assigned to LS-based therapy or standard inotropic support. At the time of transplantation, the groups did not differ in age, gender, heart failure etiology, hemodynamic profile, LVEF, or comorbidities. While there were no differences in serum creatinine (sCr) or eGFR between groups at baseline, patients in the LS group had a greater increase in their relative eGFR (62% vs. 12%, p = 0.002) and a lower incidence of acute kidney injury (AKI) (28% vs. 6%, p = 0.01) during the first post-transplant week. On logistic regression analysis, correlates of AKI were randomization to LS therapy (OR = 0.21 [0.09-0.62], p = 0.01), baseline renal dysfunction (OR = 3.9 [1.1-13.6], p = 0.032), and diabetes mellitus (OR = 4.2 [1.1-16.5], p = 0.038). However, LS was associated with a greater need for additional norepinephrine therapy (40 [85%] vs. 15 [31%], p < 0.001) and a trend toward longer intensive care unit stay (9.5 ± 9.0 d vs. 7.0 ± 6.0 d, p = 0.13). CONCLUSIONS In patients undergoing heart transplantation, levosimendan-based strategy may be associated with better renal function when compared to standard therapy.
Collapse
Affiliation(s)
- Ivan Knezevic
- Advanced Heart Failure and Transplantation Center, UMC, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kobashigawa J, Zuckermann A, Macdonald P, Leprince P, Esmailian F, Luu M, Mancini D, Patel J, Razi R, Reichenspurner H, Russell S, Segovia J, Smedira N, Stehlik J, Wagner F. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant 2014; 33:327-40. [DOI: 10.1016/j.healun.2014.02.027] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
|
12
|
Pierrakos C, Velissaris D, Franchi F, Muzzi L, Karanikolas M, Scolletta S. Levosimendan in critical illness: a literature review. J Clin Med Res 2014; 6:75-85. [PMID: 24578748 PMCID: PMC3935527 DOI: 10.14740/jocmr1702w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 01/30/2023] Open
Abstract
Levosimendan, the active enantiomer of simendan, is a calcium sensitizer developed for treatment of decompensated heart failure, exerts its effects independently of the beta adrenergic receptor and seems beneficial in cases of severe, intractable heart failure. Levosimendan is usually administered as 24-h infusion, with or without a loading dose, but dosing needs adjustment in patients with severe liver or renal dysfunction. Despite several promising reports, the role of levosimendan in critical illness has not been thoroughly evaluated. Available evidence suggests that levosimendan is a safe treatment option in critically ill patients and may reduce mortality from cardiac failure. However, data from well-designed randomized controlled trials in critically ill patients are needed to validate or refute these preliminary conclusions. This literature review is an attempt to synthesize available evidence on the role and possible benefits of levosimendan in critically ill patients with severe heart failure.
Collapse
Affiliation(s)
- Charalampos Pierrakos
- Department of Intensive Care, Universite Catholique de Louvain, Mont-Godinne University Hospital, Yvoir 5530, Belgium
| | - Dimitrios Velissaris
- Department of Internal Medicine, University of Patras School of Medicine, Patras, Greece
| | - Federico Franchi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luigi Muzzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Menelaos Karanikolas
- Department of Anesthesiology, Washington University School of Medicine, Campus Box 8054, 660 S. Euclid Avenue, St. Louis, MO, USA
| | - Sabino Scolletta
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Theiss HD, Grabmaier U, Kreissl N, Hagl C, Steinbeck G, Sodian R, Franz WM, Kaczmarek I. Preconditioning with levosimendan before implantation of left ventricular assist devices. Artif Organs 2013; 38:231-4. [PMID: 24147881 DOI: 10.1111/aor.12150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this retrospective study, we investigated the impact of preconditioning of the right ventricle with the calcium sensitizer levosimendan immediately before left ventricular assist device (LVAD) implantation on outcome and survival. Nine consecutive LVAD patients (seven suffering from dilative cardiomyopathy and two from ischemic cardiomyopathy) with echocardiographic and invasive evidence of right heart insufficiency received levosimendan with 0.1 μg/kg body weight/min for 24 h before implantation of the assist device (seven HeartWare and two Jarvik 2000). Administration of levosimendan was safe and had not to be discontinued in any patient. We observed no relevant side effects. Twelve-month survival after implantation of the LVAD was 89% representing a superior outcome compared with the fifth INTERMACS registry data with 75% survival. Two temporary extracorporeal membrane-oxygenation implantations were necessary due to intraoperative right ventricular dysfunction. Only one patient died 5 weeks after LVAD implantation of multiorgan failure, five patients were successfully transplanted, and three patients underwent LVAD implantation for destination therapy. Levosimendan might improve clinical outcome and survival when used as pretreatment in patients with right heart insufficiency prior to LVAD implantation. However, we recommend a larger controlled trial in the future to confirm our preliminary results.
Collapse
Affiliation(s)
- Hans D Theiss
- Medical Department I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Perioperative anesthetic management for cardiac transplantation is reviewed. Recent developments in adult cardiac transplantation are noted. This review includes demographics and historical results, recipient and donor selection and evaluation, mechanical circulatory support and heart transplantation techniques, and patient management immediately postimplantation.
Collapse
Affiliation(s)
- Sofia Fischer
- Department of Anesthesiology, Emory University School of Medicine, 550 Peachtree Street, Atlanta, GA 30308, USA
| | | |
Collapse
|
15
|
|
16
|
Iyer A, Kumarasinghe G, Hicks M, Watson A, Gao L, Doyle A, Keogh A, Kotlyar E, Hayward C, Dhital K, Granger E, Jansz P, Pye R, Spratt P, Macdonald PS. Primary graft failure after heart transplantation. J Transplant 2011; 2011:175768. [PMID: 21837269 PMCID: PMC3151502 DOI: 10.1155/2011/175768] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/09/2011] [Indexed: 11/17/2022] Open
Abstract
Primary graft failure (PGF) is a devastating complication that occurs in the immediate postoperative period following heart transplantation. It manifests as severe ventricular dysfunction of the donor graft and carries significant mortality and morbidity. In the last decade, advances in pharmacological treatment and mechanical circulatory support have improved the outlook for heart transplant recipients who develop this complication. Despite these advances in treatment, PGF is still the leading cause of death in the first 30 days after transplantation. In today's climate of significant organ shortages and growing waiting lists, transplant units worldwide have increasingly utilised "marginal donors" to try and bridge the gap between "supply and demand." One of the costs of this strategy has been an increased incidence of PGF. As the threat of PGF increases, the challenges of predicting and preventing its occurrence, as well as the identification of more effective treatment modalities, are vital areas of active research and development.
Collapse
Affiliation(s)
- Arjun Iyer
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Gayathri Kumarasinghe
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Mark Hicks
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Alasdair Watson
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Ling Gao
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Aoife Doyle
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Anne Keogh
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Eugene Kotlyar
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Christopher Hayward
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Kumud Dhital
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Emily Granger
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Paul Jansz
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Roger Pye
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Phillip Spratt
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Peter Simon Macdonald
- Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- Cardiac Physiology and Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
17
|
Beiras-Fernandez A, Kur F, Kaczmarek I, Frisch P, Weis M, Reichart B, Weis F. Levosimendan for Primary Graft Failure After Heart Transplantation: A 3-Year Follow-up. Transplant Proc 2011; 43:2260-2. [DOI: 10.1016/j.transproceed.2011.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Iribarne A, Russo MJ. Authors' Reply: Challenges in Studying Outcomes of Primary Graft Failure After Heart Transplantation—The Need for a Standardized Definition. Transplantation 2011. [DOI: 10.1097/tp.0b013e318208c056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Primary Graft Failure After Heart Transplantation: Urgent Need for a Consensus Guideline. Transplantation 2011; 91:e31; author reply e31-2. [DOI: 10.1097/tp.0b013e3182094a83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
|