1
|
Tomioka Y, Sugimoto S, Yamamoto H, Tomida S, Shiotani T, Tanaka S, Shien K, Suzawa K, Miyoshi K, Otani S, Yamamoto H, Okazaki M, Yamane M, Toyooka S. Identification of genetic loci associated with renal dysfunction after lung transplantation using an ethnic-specific single-nucleotide polymorphism array. Sci Rep 2023; 13:8912. [PMID: 37264212 PMCID: PMC10235026 DOI: 10.1038/s41598-023-36143-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023] Open
Abstract
Renal dysfunction is a long-term complication associated with an increased mortality after lung transplantation (LT). We investigated the association of single-nucleotide polymorphisms (SNPs) with the development of renal dysfunction after LT using a Japanese-specific SNP array. First, eligible samples of 34 LT recipients were genotyped using the SNP array and divided into two groups, according to the presence of homozygous and heterozygous combinations of mutant alleles of the 162 renal-related SNPs. To identify candidate SNPs, the renal function tests were compared between the two groups for each SNP. Next, we investigated the association between the candidate SNPs and the time course of changes of the estimated glomerular filtration rate (eGFR) in the 99 recipients until 10 years after the LT. ΔeGFR was defined as the difference between the postoperative and preoperative eGFR values. Eight SNPs were identified as the candidate SNPs in the 34 recipients. Validation analysis of these 8 candidate SNPs in all the 99 recipients showed that three SNPs, namely, rs10277115, rs4690095, and rs792064, were associated with significant changes of the ΔeGFR. Pre-transplant identification of high-risk patients for the development of renal dysfunction after LT based on the presence of these SNPs might contribute to providing personalized medicine.
Collapse
Affiliation(s)
- Yasuaki Tomioka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Haruchika Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshio Shiotani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaomi Yamane
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Jin Z, Suen KC, Wang Z, Ma D. Review 2: Primary graft dysfunction after lung transplant-pathophysiology, clinical considerations and therapeutic targets. J Anesth 2020; 34:729-740. [PMID: 32691226 PMCID: PMC7369472 DOI: 10.1007/s00540-020-02823-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Primary graft dysfunction (PGD) is one of the most common complications in the early postoperative period and is the most common cause of death in the first postoperative month. The underlying pathophysiology is thought to be the ischaemia–reperfusion injury that occurs during the storage and reperfusion of the lung engraftment; this triggers a cascade of pathological changes, which result in pulmonary vascular dysfunction and loss of the normal alveolar architecture. There are a number of surgical and anaesthetic factors which may be related to the development of PGD. To date, although treatment options for PGD are limited, there are several promising experimental therapeutic targets. In this review, we will discuss the pathophysiology, clinical management and potential therapeutic targets of PGD.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Ka Chun Suen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Zhiping Wang
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| |
Collapse
|