1
|
Ali A, Pettenuzzo T, Ramadan K, Farrell A, Di Nardo M, Liu M, Keshavjee S, Fan E, Cypel M, Del Sorbo L. Surfactant therapy in lung transplantation: A systematic review and meta-analysis. Transplant Rev (Orlando) 2021; 35:100637. [PMID: 34224988 DOI: 10.1016/j.trre.2021.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Despite numerous reports demonstrating the efficacy of exogenous surfactant therapy during lung transplantation, this strategy remains absent in routine clinical use. Here, we systematically review and meta-analyze the effect of exogenous surfactant on respiratory pathophysiological variables during lung transplantation. METHODS To identify relevant clinical and pre-clinical studies, we performed an electronic search of MEDLINE, EMBASE, and Cochrane CENTRAL from inception to June 11, 2021. In addition, research-in-progress databases were searched. Randomized and non-randomized adult and pediatric clinical studies and animal experiments that compared the use of surfactant for lung transplantation with a control group were included. The primary outcome was the ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2 ratio). RESULTS From 1,041 citations, we identified 35 studies, of which 6 were clinical studies and 29 were pre-clinical. Thirty-two studies were included in the quantitative analysis. The administration of surfactant therapy during clinical lung transplantation significantly improved PaO2/FiO2 ratio in recipients (mean difference [MD] 93 mmHg, 95% confidence interval [CI] 25-160 mmHg, p < 0.01). Similar results were seen in pre-clinical settings (MD 201 mmHg, 95% CI 145-256 mmHg, p < 0.01). Moreover, surfactant benefited a range of important physiologic and biologic outcomes after preclinical lung transplantation. The overall certainty of evidence was very low. CONCLUSIONS Exogenous surfactant therapy improves post-transplant lung function; however, its effects on clinical outcomes remain uncertain. High-quality randomized controlled trials are needed to determine whether the physiologic benefits of surfactant therapy affect patient-important outcomes in lung transplant recipients.
Collapse
Affiliation(s)
- Aadil Ali
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, MaRS Discovery District, 101 College St, Toronto, Ontario M5G 1L7, Canada.
| | - Tommaso Pettenuzzo
- Interdepartmental Division of Critical Care Medicine, University Health Network, University of Toronto, 204 Victoria Street, Toronto, Ontario M5B 1T8, Canada.
| | - Khaled Ramadan
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, MaRS Discovery District, 101 College St, Toronto, Ontario M5G 1L7, Canada.
| | - Ashley Farrell
- Library & Information Services, University Health Network, 101 College St, Toronto, Ontario M5G 1L7, Canada.
| | - Matteo Di Nardo
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, MaRS Discovery District, 101 College St, Toronto, Ontario M5G 1L7, Canada.
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, MaRS Discovery District, 101 College St, Toronto, Ontario M5G 1L7, Canada.
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, MaRS Discovery District, 101 College St, Toronto, Ontario M5G 1L7, Canada; Division of Thoracic Surgery, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada.
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University Health Network, University of Toronto, 204 Victoria Street, Toronto, Ontario M5B 1T8, Canada.
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, MaRS Discovery District, 101 College St, Toronto, Ontario M5G 1L7, Canada; Division of Thoracic Surgery, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada.
| | - Lorenzo Del Sorbo
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, MaRS Discovery District, 101 College St, Toronto, Ontario M5G 1L7, Canada; Interdepartmental Division of Critical Care Medicine, University Health Network, University of Toronto, 204 Victoria Street, Toronto, Ontario M5B 1T8, Canada.
| |
Collapse
|
2
|
Schnapper A, Christmann A, Knudsen L, Rahmanian P, Choi YH, Zeriouh M, Karavidic S, Neef K, Sterner-Kock A, Guschlbauer M, Hofmaier F, Maul AC, Wittwer T, Wahlers T, Mühlfeld C, Ochs M. Stereological assessment of the blood-air barrier and the surfactant system after mesenchymal stem cell pretreatment in a porcine non-heart-beating donor model for lung transplantation. J Anat 2017; 232:283-295. [PMID: 29193065 DOI: 10.1111/joa.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
More frequent utilization of non-heart-beating donor (NHBD) organs for lung transplantation has the potential to relieve the shortage of donor organs. In particular with respect to uncontrolled NHBD, concerns exist regarding the risk of ischaemia/reperfusion (IR) injury-related graft damage or dysfunction. Due to their immunomodulating and tissue-remodelling properties, bone-marrow-derived mesenchymal stem cells (MSCs) have been suspected of playing a beneficial role regarding short- and long-term survival and function of the allograft. Thus, MSC administration might represent a promising pretreatment strategy for NHBD organs. To study the initial effects of warm ischaemia and MSC application, a large animal lung transplantation model was generated, and the structural organ composition of the transplanted lungs was analysed stereologically with particular respect to the blood-gas barrier and the surfactant system. In this study, porcine lungs (n = 5/group) were analysed. Group 1 was the sham-operated control group. In pigs of groups 2-4, cardiac arrest was induced, followed by a period of 3 h of ventilated ischaemia at room temperature. In groups 3 and 4, 50 × 106 MSCs were administered intravascularly via the pulmonary artery and endobronchially, respectively, during the last 10 min of ischaemia. The left lungs were transplanted, followed by a reperfusion period of 4 h. Then, lungs were perfusion-fixed and processed for light and electron microscopy. Samples were analysed stereologically for IR injury-related structural parameters, including volume densities and absolute volumes of parenchyma components, alveolar septum components, intra-alveolar oedema, and the intracellular and intra-alveolar surfactant pool. Additionally, the volume-weighted mean volume of lamellar bodies (lbs) and their profile size distribution were determined. Three hours of ventilated warm ischaemia was tolerated without eliciting histological or ultrastructural signs of IR injury, as revealed by qualitative and quantitative assessment. However, warm ischaemia influenced the surfactant system. The volume-weighted mean volume of lbs was reduced significantly (P = 0.024) in groups subjected to ischaemia (group medians of groups 2-4: 0.180-0.373 μm³) compared with the sham control group (median 0.814 μm³). This was due to a lower number of large lb profiles (size classes 5-15). In contrast, the intra-alveolar surfactant system was not altered significantly. No significant differences were encountered comparing ischaemia alone (group 2) or ischaemia plus application of MSCs (groups 3 and 4) in this short-term model.
Collapse
Affiliation(s)
- Anke Schnapper
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany
| | - Astrid Christmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany
| | - Parwis Rahmanian
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Mohamed Zeriouh
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Samira Karavidic
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Klaus Neef
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Anja Sterner-Kock
- Center for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Maria Guschlbauer
- Center for Experimental Medicine, University of Cologne, Cologne, Germany.,Decentral Animal Facility, University of Cologne, Cologne, Germany
| | - Florian Hofmaier
- Center for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Alexandra C Maul
- Center for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Thorsten Wittwer
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
4
|
Herrmann G, Knudsen L, Madershahian N, Mühlfeld C, Frank K, Rahmanian P, Wahlers T, Wittwer T, Ochs M. Effects of exogenous surfactant on the non-heart-beating donor lung graft in experimental lung transplantation - a stereological study. J Anat 2014; 224:594-602. [PMID: 24527871 DOI: 10.1111/joa.12167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 11/29/2022] Open
Abstract
The use of non-heart-beating donor (NHBD) lungs may help to overcome the shortage of lung grafts in clinical lung transplantation, but warm ischaemia and ischaemia/reperfusion injury (I/R injury) resulting in primary graft dysfunction represent a considerable threat. Thus, better strategies for optimized preservation of lung grafts are urgently needed. Surfactant dysfunction has been shown to contribute to I/R injury, and surfactant replacement therapy is effective in enhancing lung function and structural integrity in related rat models. In the present study we hypothesize that surfactant replacement therapy reduces oedema formation in a pig model of NHBD lung transplantation. Oedema formation was quantified with (SF) and without (non-SF) surfactant replacement therapy in interstitial and alveolar compartments by means of design-based stereology in NHBD lungs 7 h after cardiac arrest, reperfusion and transplantation. A sham-operated group served as control. In both NHBD groups, nearly all animals died within the first hours after transplantation due to right heart failure. Both SF and non-SF developed an interstitial oedema of similar degree, as shown by an increase in septal wall volume and arithmetic mean thickness as well as an increase in the volume of peribron-chovascular connective tissue. Regarding intra-alveolar oedema, no statistically significant difference could be found between SF and non-SF. In conclusion, surfactant replacement therapy cannot prevent poor outcome after prolonged warm ischaemia of 7 h in this model. While the beneficial effects of surfactant replacement therapy have been observed in several experimental and clinical studies related to heart-beating donor lungs and cold ischaemia, it is unlikely that surfactant replacement therapy will overcome the shortage of organs in the context of prolonged warm ischaemia, for example, 7 h. Moreover, our data demonstrate that right heart function and dysfunctions of the pulmonary vascular bed are limiting factors that need to be addressed in NHBD.
Collapse
|