1
|
Wells MA, See Hoe LE, Molenaar P, Pedersen S, Obonyo NG, McDonald CI, Mo W, Bouquet M, Hyslop K, Passmore MR, Bartnikowski N, Suen JY, Peart JN, McGiffin DC, Fraser JF. Compromised right ventricular contractility in an ovine model of heart transplantation following 24 h donor brain stem death. Pharmacol Res 2021; 169:105631. [PMID: 33905863 DOI: 10.1016/j.phrs.2021.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/19/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Heart failure is an inexorably progressive disease with a high mortality, for which heart transplantation (HTx) remains the gold standard treatment. Currently, donor hearts are primarily derived from patients following brain stem death (BSD). BSD causes activation of the sympathetic nervous system, increases endothelin levels, and triggers significant inflammation that together with potential myocardial injury associated with the transplant procedure, may affect contractility of the donor heart. We examined peri-transplant myocardial catecholamine sensitivity and cardiac contractility post-BSD and transplantation in a clinically relevant ovine model. METHODS Donor sheep underwent BSD (BSD, n = 5) or sham (no BSD) procedures (SHAM, n = 4) and were monitored for 24h prior to heart procurement. Orthotopic HTx was performed on a separate group of donor animals following 24h of BSD (BSD-Tx, n = 6) or SHAM injury (SH-Tx, n = 5). The healthy recipient heart was used as a control (HC, n = 11). A cumulative concentration-effect curve to (-)-noradrenaline (NA) was established using left (LV) and right ventricular (RV) trabeculae to determine β1-adrenoceptor mediated potency (-logEC50 [(-)-noradrenaline] M) and maximal contractility (Emax). RESULTS Our data showed reduced basal and maximal (-)-noradrenaline induced contractility of the RV (but not LV) following BSD as well as HTx, regardless of whether the donor heart was exposed to BSD or SHAM. The potency of (-)-noradrenaline was lower in left and right ventricles for BSD-Tx and SH-Tx compared to HC. CONCLUSION These studies show that the combination of BSD and transplantation are likely to impair contractility of the donor heart, particularly for the RV. For the donor heart, this contractile dysfunction appears to be independent of changes to β1-adrenoceptor sensitivity. However, altered β1-adrenoceptor signalling is likely to be involved in post-HTx contractile dysfunction.
Collapse
Affiliation(s)
- Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; School of Medical Sciences, Griffith University, Queensland, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia.
| | - Peter Molenaar
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Sanne Pedersen
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - Nchafatso G Obonyo
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Wellcome Trust Centre for Global Health Research, Imperial College London, United Kingdom; Initiative to Develop African Research Leaders (IDeAL), Kilifi, Kenya
| | - Charles I McDonald
- The Department of Anaesthesia and Perfusion, The Prince Charles Hospital, Queensland, Australia
| | - Weilan Mo
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Australia
| | - Mahè Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Science and Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | - Jason N Peart
- School of Medical Sciences, Griffith University, Queensland, Australia
| | - David C McGiffin
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Cardiothoracic Surgery and Transplantation, The Alfred Hospital, and Monash University, Melbourne, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia
| | -
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; School of Medical Sciences, Griffith University, Queensland, Australia; Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Australia; Cardiothoracic Surgery and Transplantation, The Alfred Hospital, and Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Wells MA, See Hoe LE, Heather LC, Molenaar P, Suen JY, Peart J, McGiffin D, Fraser JF. Peritransplant Cardiometabolic and Mitochondrial Function: The Missing Piece in Donor Heart Dysfunction and Graft Failure. Transplantation 2021; 105:496-508. [PMID: 33617201 DOI: 10.1097/tp.0000000000003368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Primary graft dysfunction is an important cause of morbidity and mortality after cardiac transplantation. Donor brain stem death (BSD) is a significant contributor to donor heart dysfunction and primary graft dysfunction. There remain substantial gaps in the mechanistic understanding of peritransplant cardiac dysfunction. One of these gaps is cardiac metabolism and metabolic function. The healthy heart is an "omnivore," capable of utilizing multiple sources of nutrients to fuel its enormous energetic demand. When this fails, metabolic inflexibility leads to myocardial dysfunction. Data have hinted at metabolic disturbance in the BSD donor and subsequent heart transplantation; however, there is limited evidence demonstrating specific metabolic or mitochondrial dysfunction. This review will examine the literature surrounding cardiometabolic and mitochondrial function in the BSD donor, organ preservation, and subsequent cardiac transplantation. A more comprehensive understanding of this subject may then help to identify important cardioprotective strategies to improve the number and quality of donor hearts.
Collapse
Affiliation(s)
- Matthew A Wells
- School of medical Science, Griffith University Gold Coast, Australia
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter Molenaar
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane City, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Jason Peart
- School of medical Science, Griffith University Gold Coast, Australia
| | - David McGiffin
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Australia
| | - John F Fraser
- School of medical Science, Griffith University Gold Coast, Australia
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, St Lucia, Australia
| |
Collapse
|
3
|
See Hoe LE, Bartnikowski N, Wells MA, Suen JY, Fraser JF. Hurdles to Cardioprotection in the Critically Ill. Int J Mol Sci 2019; 20:E3823. [PMID: 31387264 PMCID: PMC6695809 DOI: 10.3390/ijms20153823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the largest contributor to worldwide mortality, and the deleterious impact of heart failure (HF) is projected to grow exponentially in the future. As heart transplantation (HTx) is the only effective treatment for end-stage HF, development of mechanical circulatory support (MCS) technology has unveiled additional therapeutic options for refractory cardiac disease. Unfortunately, despite both MCS and HTx being quintessential treatments for significant cardiac impairment, associated morbidity and mortality remain high. MCS technology continues to evolve, but is associated with numerous disturbances to cardiac function (e.g., oxidative damage, arrhythmias). Following MCS intervention, HTx is frequently the destination option for survival of critically ill cardiac patients. While effective, donor hearts are scarce, thus limiting HTx to few qualifying patients, and HTx remains correlated with substantial post-HTx complications. While MCS and HTx are vital to survival of critically ill cardiac patients, cardioprotective strategies to improve outcomes from these treatments are highly desirable. Accordingly, this review summarizes the current status of MCS and HTx in the clinic, and the associated cardiac complications inherent to these treatments. Furthermore, we detail current research being undertaken to improve cardiac outcomes following MCS/HTx, and important considerations for reducing the significant morbidity and mortality associated with these necessary treatment strategies.
Collapse
Affiliation(s)
- Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia.
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia.
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Science and Engineering Faculty, Queensland University of Technology, Chermside 4032, Australia
| | - Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- School of Medical Science, Griffith University, Southport 4222, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia
| |
Collapse
|