1
|
Alam AH, Lee CY, Kanwar MK, Moayedi Y, Bernhardt AM, Takeda K, Pham DT, Salerno C, Zuckermann A, D'Alessandro D, Pretorius VG, Louca JO, Large S, Bowles DE, Silvestry SC, Moazami N. Current Approaches to Optimize Donor Heart for Transplantation. J Heart Lung Transplant 2024:S1053-2498(24)02012-6. [PMID: 39730081 DOI: 10.1016/j.healun.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Heart transplantation remains a critical therapy for patients with end-stage heart failure, offering incremental survival and improved quality of life. One of the key components behind the success of heart transplantation is the condition and preservation of the donor heart. In this review, we provide a comprehensive overview of ischemic reperfusion injury, risk factors associated with primary graft dysfunction, current use of various preservation solutions for organ procurement and recent advancements in donor heart procurement technologies. This State-of-the-Art review will explore factors associated with bringing the "ideal" donor heart to the operating room in the contemporary era.
Collapse
Affiliation(s)
- Amit H Alam
- Department of Cardiology, New York University Langone Health, New York, NY, USA
| | - Candice Y Lee
- Department of Thoracic and Cardiovascular Surgery, Allegheny Health Network, Pittsburgh, PA
| | - Manreet K Kanwar
- Cardiovascular Institute at Allegheny Health Network, Pittsburgh PA, USA
| | - Yasbanoo Moayedi
- Ajmera Transplant Centre, University of Toronto, Toronto, ON, Canada
| | - Alexander M Bernhardt
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Koji Takeda
- Division of Cardiac, Thoracic & Vascular Surgery, Department of Surgery, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Duc Thinh Pham
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | - David D'Alessandro
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Victor G Pretorius
- Division of Cardiovascular and Thoracic Surgery, University of California San Diego, La Jolla, CA
| | - John O Louca
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Stephen Large
- Royal Papworth Hospital Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Dawn E Bowles
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Scott C Silvestry
- Department of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, AZ
| | - Nader Moazami
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA
| |
Collapse
|
2
|
Joshi Y, Wang K, MacLean C, Villanueva J, Gao L, Watson A, Iyer A, Connellan M, Granger E, Jansz P, Macdonald P. The Rapidly Evolving Landscape of DCD Heart Transplantation. Curr Cardiol Rep 2024; 26:1499-1507. [PMID: 39382782 DOI: 10.1007/s11886-024-02148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE OF REVIEW To summarise current international clinical outcomes from donation after circulatory death heart transplantation (DCD-HT); discuss procurement strategies, their impact on outcomes and overall organ procurement; and identify novel approaches and future areas for research in DCD-HT. RECENT FINDINGS Globally, DCD-HT survival outcomes (regardless of procurement strategy) are comparable to heart transplantation from brain dead donors (BDD). Experience with normothermic machine perfusion sees improvement in rates of primary graft dysfunction. Techniques have evolved to reduce cold ischaemic exposure to directly procured DCD hearts, though controlled periods of cold ischaemia can likely be tolerated. There is interest in hypothermic machine perfusion (HMP) for directly procured DCD hearts, with promising early results. Survival outcomes are firmly established to be equivalent between BDD and DCD-HT. Procurement strategy (direct procurement vs. regional perfusion) remains a source of debate. Methods to improve allograft warm ischaemic tolerance are of interest and will be key to the uptake of HMP for directly procured DCD hearts.
Collapse
Affiliation(s)
- Yashutosh Joshi
- Heart Transplantation Unit, St Vincent's Hospital Sydney, 390 Victoria St., Darlinghurst, NSW, 2010, Australia.
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
- University of New South Wales, Randwick, NSW, Australia.
| | | | | | - Jeanette Villanueva
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- University of New South Wales, Randwick, NSW, Australia
| | - Ling Gao
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Alasdair Watson
- Heart Transplantation Unit, St Vincent's Hospital Sydney, 390 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Arjun Iyer
- Heart Transplantation Unit, St Vincent's Hospital Sydney, 390 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Mark Connellan
- Heart Transplantation Unit, St Vincent's Hospital Sydney, 390 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Emily Granger
- Heart Transplantation Unit, St Vincent's Hospital Sydney, 390 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Paul Jansz
- Heart Transplantation Unit, St Vincent's Hospital Sydney, 390 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Peter Macdonald
- Heart Transplantation Unit, St Vincent's Hospital Sydney, 390 Victoria St., Darlinghurst, NSW, 2010, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
3
|
Brouckaert J, Vandendriessche K, Degezelle K, Van de Voorde K, De Burghgraeve F, Desmet L, Vlasselaers D, Ingels C, Dauwe D, De Troy E, Ceulemans LJ, Van Raemdonck D, Monbaliu D, Meyns B, Van den Eynde R, Rex S, Van Cleemput J, Rega F. Successful clinical transplantation of hearts donated after circulatory death using direct procurement followed by hypothermic oxygenated perfusion: A report of the first 3 cases. J Heart Lung Transplant 2024; 43:1907-1910. [PMID: 39069162 DOI: 10.1016/j.healun.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Janne Brouckaert
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium.
| | | | - Karlien Degezelle
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Francis De Burghgraeve
- LCGO Leuven Cooperating Group for Organ Donation, University Hospitals Leuven, Leuven, Belgium
| | - Lars Desmet
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Vlasselaers
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Catherine Ingels
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Dieter Dauwe
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Erwin De Troy
- Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Department of Abdominal Transplantation Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Meyns
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Raf Van den Eynde
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Steffen Rex
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | | | - Filip Rega
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Zhang MX, Zhao Q, He XS. Research progress of ischemia-free liver transplantation. Hepatobiliary Pancreat Dis Int 2024:S1499-3872(24)00126-7. [PMID: 39489635 DOI: 10.1016/j.hbpd.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Ischemia-reperfusion injury (IRI) is an inherent issue in organ transplantation. Because of the allograft shortage, more and more extended criteria donor (ECD) organs are used, unfortunately these grafts are more susceptible to IRI. Although machine perfusion technology has brought hope to alleviate IRI, this technology is still unable to eradicate IRI-related organ damage. Ischemia-free liver transplantation (IFLT) can completely avoid IRI, thereby improve graft function and recipient outcome, and allow to expand organ pool. This review summarized the latest progresses in IFLT, and speculated the future development of this concept.
Collapse
Affiliation(s)
- Ming-Xi Zhang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510000, China
| | - Qiang Zhao
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510000, China
| | - Xiao-Shun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510000, China.
| |
Collapse
|
5
|
Vervoorn MT, Ballan EM, Kaffka Genaamd Dengler SE, Meijborg VMF, de Jager SCA, Van Wijk R, van der Kaaij NP. A perspective on the added value of red blood cells during cardiac hypothermic oxygenated perfusion. J Heart Lung Transplant 2024:S1053-2498(24)01879-5. [PMID: 39369969 DOI: 10.1016/j.healun.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024] Open
Abstract
Hypothermic oxygenated perfusion (HOPE) is an emerging technique for donor heart preservation that is currently being studied in multiple clinical trials with promising results. When compared to HOPE for other organs, cardiac protocols involve red blood cell (RBC) supplementation, despite absence of comparative evidence for its benefits. In this perspective paper, we discuss the pros and cons of the addition of RBCs during cardiac HOPE. Although the current clinical results with RBC supplementation during HOPE seem promising, potential downsides of RBC supplementation cannot be ruled out. The impact of supplemented RBCs during cardiac HOPE requires further investigation to improve HOPE protocols, to optimize heart preservation using this promising technology.
Collapse
Affiliation(s)
- Mats T Vervoorn
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elisa M Ballan
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | | | - Veronique M F Meijborg
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia C A de Jager
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard Van Wijk
- Department Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels P van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Niroomand A, Nita GE, Lindstedt S. Machine Perfusion and Bioengineering Strategies in Transplantation-Beyond the Emerging Concepts. Transpl Int 2024; 37:13215. [PMID: 39267617 PMCID: PMC11390383 DOI: 10.3389/ti.2024.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Solid organ transplantation has progressed rapidly over the decades from the first experimental procedures to its role in the modern era as an established treatment for end-stage organ disease. Solid organ transplantation including liver, kidney, pancreas, heart, and lung transplantation, is the definitive option for many patients, but despite the advances that have been made, there are still significant challenges in meeting the demand for viable donor grafts. Furthermore, post-operatively, the recipient faces several hurdles, including poor early outcomes like primary graft dysfunction and acute and chronic forms of graft rejection. In an effort to address these issues, innovations in organ engineering and treatment have been developed. This review covers efforts made to expand the donor pool including bioengineering techniques and the use of ex vivo graft perfusion. It also covers modifications and treatments that have been trialed, in addition to research efforts in both abdominal organs and thoracic organs. Overall, this article discusses recent innovations in machine perfusion and organ bioengineering with the aim of improving and increasing the quality of donor organs.
Collapse
Affiliation(s)
- Anna Niroomand
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - George Emilian Nita
- Department of Transplantation Surgery, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Rega F, Lebreton G, Para M, Michel S, Schramm R, Begot E, Vandendriessche K, Kamla C, Gerosa G, Berman M, Boeken U, Clark S, Ranasinghe A, Ius F, Forteza A, Pivodic A, Hennig F, Guenther S, Zuckermann A, Knosalla C, Dellgren G, Wallinder A. Hypothermic oxygenated perfusion of the donor heart in heart transplantation: the short-term outcome from a randomised, controlled, open-label, multicentre clinical trial. Lancet 2024; 404:670-682. [PMID: 39153817 DOI: 10.1016/s0140-6736(24)01078-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Static cold storage (SCS) remains the gold standard for preserving donor hearts before transplantation but is associated with ischaemia, anaerobic metabolism, and organ injuries, leading to patient morbidity and mortality. We aimed to evaluate whether continuous, hypothermic oxygenated machine perfusion (HOPE) of the donor heart is safe and superior compared with SCS. METHODS We performed a multinational, multicentre, randomised, controlled, open-label clinical trial with a superiority design at 15 transplant centres across eight European countries. Adult candidates for heart transplantation were eligible and randomly assigned in a 1:1 ratio. Donor inclusion criteria were age 18-70 years with no previous sternotomy and donation after brain death. In the treatment group, the preservation protocol involved the use of a portable machine perfusion system ensuring HOPE of the resting donor heart. The donor hearts in the control group underwent ischaemic SCS according to standard practices. The primary outcome was time to first event of a composite of either cardiac-related death, moderate or severe primary graft dysfunction (PGD) of the left ventricle, PGD of the right ventricle, acute cellular rejection at least grade 2R, or graft failure (with use of mechanical circulatory support or re-transplantation) within 30 days after transplantation. We included all patients who were randomly assigned, fulfilled inclusion and exclusion criteria, and received a transplant in the primary analysis and all patients who were randomly assigned and received a transplant in the safety analyses. This trial was registered with ClicalTrials.gov (NCT03991923) and is ongoing. FINDINGS A total of 229 patients were enrolled between Nov 25, 2020, and May 19, 2023. The primary analysis population included 204 patients who received a transplant. There were no patients who received a transplant lost to follow-up. All 100 donor hearts preserved with HOPE were transplantable after perfusion. The primary endpoint was registered in 19 (19%) of 101 patients in the HOPE group and 31 (30%) of 103 patients in the SCS group, corresponding to a risk reduction of 44% (hazard ratio 0·56; 95% CI 0·32-0·99; log-rank test p=0·059). PGD was the primary outcome event in 11 (11%) patients in the HOPE group and 29 (28%) in the SCS group (risk ratio 0·39; 95% CI 0·20-0·73). In the HOPE group, 63 (65%) patients had a reported serious adverse event (158 events) versus 87 (70%; 222 events) in the SCS group. Major adverse cardiac transplant events were reported in 18 (18%) and 33 (32%) patients in the HOPE and SCS group (risk ratio 0·56; 95% CI 0·34-0·92). INTERPRETATION Although there was not a significant difference in the primary endpoint, the 44% risk reduction associated with HOPE was suggested to be a clinically meaningful benefit. Post-transplant complications, measured as major adverse cardiac transplant events, were reduced. Analysis of secondary outcomes suggested that HOPE was beneficial in reducing primary graft dysfunction. HOPE in donor heart preservation addresses the existing challenges associated with graft preservation and the increasing complexity of donors and heart transplantation recipients. Future investigation will help to further elucidate the benefit of HOPE. FUNDING XVIVO Perfusion.
Collapse
Affiliation(s)
- Filip Rega
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium.
| | - Guillaume Lebreton
- Cardiac Surgery Department, Pitié-Salpétrière Hospital, APHP, Sorbonne University, Paris, France
| | - Marylou Para
- Department of Cardiovascular Surgery and Transplantation, Bichat Hospital, Université Paris Cité, Paris, France
| | - Sebastian Michel
- Clinic of Cardiac Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany; Munich Heart Alliance, German Center for Cardiovascular Research, Munich, Germany
| | - René Schramm
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center North Rhine Westfalia, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Emmanuelle Begot
- Cardiac Surgery Department, Pitié-Salpétrière Hospital, APHP, Sorbonne University, Paris, France
| | | | - Christine Kamla
- Clinic of Cardiac Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany; Munich Heart Alliance, German Center for Cardiovascular Research, Munich, Germany
| | - Gino Gerosa
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Marius Berman
- Cardiothoracic Surgery, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Udo Boeken
- Department of Cardiac Surgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Steven Clark
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, UK
| | - Aaron Ranasinghe
- Cardiac Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham, UK
| | - Fabio Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Alberta Forteza
- Department of Cardiac Surgery, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | | | - Felix Hennig
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Cardiovascular Research, Berlin, Germany
| | - Sabina Guenther
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center North Rhine Westfalia, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Cardiovascular Research, Berlin, Germany
| | - Göran Dellgren
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | |
Collapse
|
8
|
Cordoves EM, Ferrari G, Zorn E, Bacha E, Vunjak-Novakovic G, Kalfa DM. Storage, preservation, and rehabilitation of living heart valves to treat congenital heart disease. MED 2024; 5:859-862. [PMID: 39127035 DOI: 10.1016/j.medj.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 08/12/2024]
Abstract
Heart valve disease patients undergo multiple surgeries to replace structurally degraded valve prostheses, highlighting the need for valve replacements with growth and self-repair capacity. Given allogeneic valve transplantation's promise in meeting these goals by delivering a living valve replacement, we propose a framework for preserving and rehabilitating living valves ex vivo.
Collapse
Affiliation(s)
- Elizabeth M Cordoves
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Giovanni Ferrari
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Surgery, Columbia University, New York, NY, USA
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Emile Bacha
- Division of Cardiac, Thoracic, and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Medicine, Columbia University, New York, NY, USA.
| | - David M Kalfa
- Division of Cardiac, Thoracic, and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
9
|
Bommareddi S, Lima B, Shah AS, Trahanas JM. Thoraco-abdominal normothermic regional perfusion for thoracic transplantation in the United States: current state and future directions. Curr Opin Organ Transplant 2024; 29:180-185. [PMID: 38483139 DOI: 10.1097/mot.0000000000001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
PURPOSE OF REVIEW To provide an update regarding the state of thoracoabdominal normothermic regional perfusion (taNRP) when used for thoracic organ recovery. RECENT FINDINGS taNRP is growing in its utilization for thoracic organ recovery from donation after circulatory death donors, partly because of its cost effectiveness. taNRP has been shown to yield cardiac allograft recipient outcomes similar to those of brain-dead donors. Regarding the use of taNRP to recover donor lungs, United Network for Organ Sharing (UNOS) analysis shows that taNRP recovered lungs are noninferior, and taNRP has been used to consistently recover excellent lungs at high volume centers. Despite its growth, ethical debate regarding taNRP continues, though clinical data now supports the notion that there is no meaningful brain perfusion after clamping the aortic arch vessels. SUMMARY taNRP is an excellent method for recovering both heart and lungs from donation after circulatory death donors and yields satisfactory recipient outcomes in a cost-effective manner. taNRP is now endorsed by the American Society of Transplant Surgeons, though ethical debate continues.
Collapse
Affiliation(s)
- Swaroop Bommareddi
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
10
|
Egle M, Mendez‐Carmona N, Segiser A, Graf S, Siepe M, Longnus S. Hypothermic Oxygenated Perfusion Improves Vascular and Contractile Function by Preserving Endothelial Nitric Oxide Production in Cardiac Grafts Obtained With Donation After Circulatory Death. J Am Heart Assoc 2024; 13:e033503. [PMID: 38606732 PMCID: PMC11262527 DOI: 10.1161/jaha.123.033503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Cardiac donation after circulatory death is a promising option to increase graft availability. Graft preservation with 30 minutes of hypothermic oxygenated perfusion (HOPE) before normothermic machine perfusion may improve cardiac recovery as compared with cold static storage, the current clinical standard. We investigated the role of preserved nitric oxide synthase activity during HOPE on its beneficial effects. METHODS AND RESULTS Using a rat model of donation after circulatory death, hearts underwent in situ ischemia (21 minutes), were explanted for a cold storage period (30 minutes), and then reperfused under normothermic conditions (60 minutes) with left ventricular loading. Three cold storage conditions were compared: cold static storage, HOPE, and HOPE with Nω-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor). To evaluate potential confounding effects of high coronary flow during early reperfusion in HOPE hearts, bradykinin was administered to normalize coronary flow to HOPE levels in 2 additional groups (cold static storage and HOPE with Nω-nitro-L-arginine methyl ester). Cardiac recovery was significantly improved in HOPE versus cold static storage hearts, as determined by cardiac output, left ventricular work, contraction and relaxation rates, and coronary flow (P<0.05). Furthermore, HOPE attenuated postreperfusion calcium overload. Strikingly, the addition of Nω-nitro-L-arginine methyl ester during HOPE largely abolished its beneficial effects, even when early reperfusion coronary flow was normalized to HOPE levels. CONCLUSIONS HOPE provides superior preservation of ventricular and vascular function compared with the current clinical standard. Importantly, HOPE's beneficial effects require preservation of nitric oxide synthase activity during the cold storage. Therefore, the application of HOPE before normothermic machine perfusion is a promising approach to optimize graft recovery in donation after circulatory death cardiac grafts.
Collapse
Affiliation(s)
- Manuel Egle
- Department of Cardiac SurgeryInselspital, Bern University Hospital, University of BernSwitzerland
- Department for BioMedical ResearchUniversity of BernSwitzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of BernSwitzerland
| | - Natalia Mendez‐Carmona
- Department of Cardiac SurgeryInselspital, Bern University Hospital, University of BernSwitzerland
- Department for BioMedical ResearchUniversity of BernSwitzerland
| | - Adrian Segiser
- Department of Cardiac SurgeryInselspital, Bern University Hospital, University of BernSwitzerland
- Department for BioMedical ResearchUniversity of BernSwitzerland
| | - Selianne Graf
- Department of Cardiac SurgeryInselspital, Bern University Hospital, University of BernSwitzerland
- Department for BioMedical ResearchUniversity of BernSwitzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of BernSwitzerland
| | - Matthias Siepe
- Department of Cardiac SurgeryInselspital, Bern University Hospital, University of BernSwitzerland
| | - Sarah Longnus
- Department of Cardiac SurgeryInselspital, Bern University Hospital, University of BernSwitzerland
- Department for BioMedical ResearchUniversity of BernSwitzerland
| |
Collapse
|
11
|
Gao J, Shingu Y, Wakasa S. Effects of Trehalose Preconditioning on H9C2 Cell Viability and Autophagy Activation in a Model of Donation after Circulatory Death for Heart Transplantation. Curr Issues Mol Biol 2024; 46:3353-3363. [PMID: 38666940 PMCID: PMC11049330 DOI: 10.3390/cimb46040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Donation after circulatory death (DCD) is a promising strategy for alleviating donor shortage in heart transplantation. Trehalose, an autophagy inducer, has been shown to be cardioprotective in an ischemia-reperfusion (IR) model; however, its role in IR injury in DCD remains unknown. In the present study, we evaluated the effects of trehalose on cardiomyocyte viability and autophagy activation in a DCD model. In the DCD model, cardiomyocytes (H9C2) were exposed to 1 h warm ischemia, 1 h cold ischemia, and 1 h reperfusion. Trehalose was administered before cold ischemia (preconditioning), during cold ischemia, or during reperfusion. Cell viability was measured using the Cell Counting Kit-8 after treatment with trehalose. Autophagy activation was evaluated by measuring autophagy flux using an autophagy inhibitor, chloroquine, and microtubule-associated protein 1A/1B light chain 3 B (LC3)-II by western blotting. Trehalose administered before the ischemic period (trehalose preconditioning) increased cell viability. The protective effects of trehalose preconditioning on cell viability were negated by chloroquine treatment. Furthermore, trehalose preconditioning increased autophagy flux. Trehalose preconditioning increased cardiomyocyte viability through the activation of autophagy in a DCD model, which could be a promising strategy for the prevention of cardiomyocyte damage in DCD transplantation.
Collapse
Affiliation(s)
| | - Yasushige Shingu
- Department of Cardiovascular Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (J.G.); (S.W.)
| | | |
Collapse
|
12
|
Saemann L, Wächter K, Gharpure N, Pohl S, Hoorn F, Korkmaz-Icöz S, Karck M, Veres G, Simm A, Szabó G. HTK vs. HTK-N for Coronary Endothelial Protection during Hypothermic, Oxygenated Perfusion of Hearts Donated after Circulatory Death. Int J Mol Sci 2024; 25:2262. [PMID: 38396938 PMCID: PMC10889240 DOI: 10.3390/ijms25042262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Protection of the coronary arteries during donor heart maintenance is pivotal to improve results and prevent the development of coronary allograft vasculopathy. The effect of hypothermic, oxygenated perfusion (HOP) with the traditional HTK and the novel HTK-N solution on the coronary microvasculature of donation-after-circulatory-death (DCD) hearts is known. However, the effect on the coronary macrovasculature is unknown. Thus, we maintained porcine DCD hearts by HOP with HTK or HTK-N for 4 h, followed by transplantation-equivalent reperfusion with blood for 2 h. Then, we removed the left anterior descending coronary artery (LAD) and compared the endothelial-dependent and -independent vasomotor function of both groups using bradykinin and sodium-nitroprusside (SNP). We also determined the transcriptome of LAD samples using microarrays. The endothelial-dependent relaxation was significantly better after HOP with HTK-N. The endothelial-independent relaxation was comparable between both groups. In total, 257 genes were expressed higher, and 668 genes were expressed lower in the HTK-N group. Upregulated genes/pathways were involved in endothelial and vascular smooth muscle cell preservation and heart development. Downregulated genes were related to ischemia/reperfusion injury, oxidative stress, mitochondrion organization, and immune reaction. The novel HTK-N solution preserves the endothelial function of DCD heart coronary arteries more effectively than traditional HTK.
Collapse
Affiliation(s)
- Lars Saemann
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kristin Wächter
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
| | - Nitin Gharpure
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
| | - Sabine Pohl
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
| | - Fabio Hoorn
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gábor Veres
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Simm
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, 06120 Halle (Saale), Germany
- Department of Cardiac Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Seefeldt JM, Libai Y, Berg K, Jespersen NR, Lassen TR, Dalsgaard FF, Ryhammer P, Pedersen M, Ilkjaer LB, Hu MA, Erasmus ME, Nielsen RR, Bøtker HE, Caspi O, Eiskjær H, Moeslund N. Effects of ketone body 3-hydroxybutyrate on cardiac and mitochondrial function during donation after circulatory death heart transplantation. Sci Rep 2024; 14:757. [PMID: 38191915 PMCID: PMC10774377 DOI: 10.1038/s41598-024-51387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Normothermic regional perfusion (NRP) allows assessment of therapeutic interventions prior to donation after circulatory death transplantation. Sodium-3-hydroxybutyrate (3-OHB) increases cardiac output in heart failure patients and diminishes ischemia-reperfusion injury, presumably by improving mitochondrial metabolism. We investigated effects of 3-OHB on cardiac and mitochondrial function in transplanted hearts and in cardiac organoids. Donor pigs (n = 14) underwent circulatory death followed by NRP. Following static cold storage, hearts were transplanted into recipient pigs. 3-OHB or Ringer's acetate infusions were initiated during NRP and after transplantation. We evaluated hemodynamics and mitochondrial function. 3-OHB mediated effects on contractility, relaxation, calcium, and conduction were tested in cardiac organoids from human pluripotent stem cells. Following NRP, 3-OHB increased cardiac output (P < 0.0001) by increasing stroke volume (P = 0.006), dP/dt (P = 0.02) and reducing arterial elastance (P = 0.02). Following transplantation, infusion of 3-OHB maintained mitochondrial respiration (P = 0.009) but caused inotropy-resistant vasoplegia that prevented weaning. In cardiac organoids, 3-OHB increased contraction amplitude (P = 0.002) and shortened contraction duration (P = 0.013) without affecting calcium handling or conduction velocity. 3-OHB had beneficial cardiac effects and may have a potential to secure cardiac function during heart transplantation. Further studies are needed to optimize administration practice in donors and recipients and to validate the effect on mitochondrial function.
Collapse
Affiliation(s)
- Jacob Marthinsen Seefeldt
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
| | - Yaara Libai
- The Laboratory for Cardiovascular Precision Medicine, Rapport Faculty of Medicine, Technion and Rambam's Cardiovascular Research and Innovation Center, 2 Efron St, Haifa, Israel
| | - Katrine Berg
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Frederik Flyvholm Dalsgaard
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Pia Ryhammer
- Department of Anesthesiology, Regional Hospital Silkeborg, Falkevej 1A, 8600, Silkeborg, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Lars Bo Ilkjaer
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark
| | - Michiel A Hu
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Michiel E Erasmus
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Roni R Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Hans Erik Bøtker
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Oren Caspi
- The Laboratory for Cardiovascular Precision Medicine, Rapport Faculty of Medicine, Technion and Rambam's Cardiovascular Research and Innovation Center, 2 Efron St, Haifa, Israel
| | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Niels Moeslund
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
14
|
Ughetto A, Roubille F, Molina A, Battistella P, Gaudard P, Demaria R, Guihaire J, Lacampagne A, Delmas C. Heart graft preservation technics and limits: an update and perspectives. Front Cardiovasc Med 2023; 10:1248606. [PMID: 38028479 PMCID: PMC10657826 DOI: 10.3389/fcvm.2023.1248606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Heart transplantation, the gold standard treatment for end-stage heart failure, is limited by heart graft shortage, justifying expansion of the donor pool. Currently, static cold storage (SCS) of hearts from donations after brainstem death remains the standard practice, but it is usually limited to 240 min. Prolonged cold ischemia and ischemia-reperfusion injury (IRI) have been recognized as major causes of post-transplant graft failure. Continuous ex situ perfusion is a new approach for donor organ management to expand the donor pool and/or increase the utilization rate. Continuous ex situ machine perfusion (MP) can satisfy the metabolic needs of the myocardium, minimizing irreversible ischemic cell damage and cell death. Several hypothermic or normothermic MP methods have been developed and studied, particularly in the preclinical setting, but whether MP is superior to SCS remains controversial. Other approaches seem to be interesting for extending the pool of heart graft donors, such as blocking the paths of apoptosis and necrosis, extracellular vesicle therapy, or donor heart-specific gene therapy. In this systematic review, we summarize the mechanisms involved in IRI during heart transplantation and existing targeting therapies. We also critically evaluate all available data on continuous ex situ perfusion devices for adult donor hearts, highlighting its therapeutic potential and current limitations and shortcomings.
Collapse
Affiliation(s)
- Aurore Ughetto
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Department of Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - François Roubille
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Cardiology Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Adrien Molina
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Pascal Battistella
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Philippe Gaudard
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Department of Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Roland Demaria
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Julien Guihaire
- Cardiac and Vascular Surgery, Marie Lanelongue Hospital, Paris Saclay University, Le Plessis Robinson, France
| | - Alain Lacampagne
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
| | - Clément Delmas
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Intensive Cardiac Care Unit, Cardiology Department, Rangueil University Hospital, Toulouse, France
- REICATRA, Institut Saint Jacques, CHU de Toulouse, Toulouse, France
| |
Collapse
|
15
|
Berkane Y, Hayau J, Filz von Reiterdank I, Kharga A, Charlès L, Mink van der Molen AB, Coert JH, Bertheuil N, Randolph MA, Cetrulo CL, Longchamp A, Lellouch AG, Uygun K. Supercooling: A Promising Technique for Prolonged Organ Preservation in Solid Organ Transplantation, and Early Perspectives in Vascularized Composite Allografts. FRONTIERS IN TRANSPLANTATION 2023; 2:1269706. [PMID: 38682043 PMCID: PMC11052586 DOI: 10.3389/frtra.2023.1269706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 05/01/2024]
Abstract
Ex-vivo preservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Justine Hayau
- Division of Plastic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Irina Filz von Reiterdank
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anil Kharga
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Abele B. Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Mark A. Randolph
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Alban Longchamp
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|