1
|
Groth JB, Kao SY, Briët MC, Stankovic KM. Hepatocyte nuclear factor-4 alpha in noise-induced cochlear neuropathy. Dev Neurobiol 2016; 76:1374-1386. [PMID: 27112738 DOI: 10.1002/dneu.22399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/14/2016] [Accepted: 04/22/2016] [Indexed: 01/12/2023]
Abstract
Noise-induced hearing loss (NIHL) is a problem of profound clinical significance and growing magnitude. Alarmingly, even moderate noise levels, previously assumed to cause only temporary shifts in auditory thresholds ("temporary" NIHL), are now known to cause cochlear synaptopathy and subsequent neuropathy. To uncover molecular mechanisms of this neuropathy, a network analysis of genes reported to have significantly altered expression after temporary threshold shift-inducing noise exposure was performed. The transcription factor Hepatocyte Nuclear Factor-4 alpha (HNF4α), which had not previously been studied in the context of cochlear response to noise, was identified as a hub of a top-ranking network. Hnf4α expression and localization using quantitative RT-PCR and in situ hybridization, respectively, were described in adolescent and adult mice exposed to neuropathic noise levels in adolescence. Isoforms α3 and α12 in the cochlea were also identified. At every age examined, Hnf4α mRNA expression in the cochlear apex was similar to expression in the base. Hnf4α expression was evident in select cochlear cells, including spiral ganglion neurons (SGNs) and hair cells, and was significantly upregulated from 6 to 70 weeks of age, especially in SGNs. This age-related Hnf4α upregulation was inhibited by neuropathic noise exposure in adolescence. Hnf4α silencing with shRNA transfection into auditory neuroblast cells (VOT-33) reduced cell viability, as measured with the MTT assay, suggesting that Hnf4α may be involved in SGN survival. Our results motivate future studies of HNF4α in cochlear pathophysiology, especially because HNF4α mutations and polymorphisms are associated with human diseases that may include hearing loss. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1374-1386, 2016.
Collapse
Affiliation(s)
- Jane Bjerg Groth
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Shyan-Yuan Kao
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | - Martijn C Briët
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otorhinolaryngology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
2
|
Spracklen TF, Whitehorn H, Vorster AA, Ramma L, Dalvie S, Ramesar RS. Genetic variation in Otos is associated with cisplatin-induced ototoxicity. Pharmacogenomics 2015; 15:1667-76. [PMID: 25410892 DOI: 10.2217/pgs.14.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Ototoxicity is an adverse drug reaction that may limit the effective use of cisplatin chemotherapy. Given the reported in vitro protective role of the gene Otos in response to cisplatin, this study aimed to explore the potential of Otos as a genetic modifier of ototoxicity. PATIENTS & METHODS One hundred South African cisplatin-receiving cancer patients with baseline and follow-up audiometric data were screened for variation in exonic target regions of Otos using direct cycle sequencing. RESULTS A total of 29 genetic variants were identified. The G alleles of Otos rs77124181 (c.-192-182C>G) and rs2291767 (c.-192-22A>G) were over-represented in ototoxicity-free patients (p = 0.022). Cumulative cisplatin dose and anatomical site of cancer were also associated with ototoxicity, while self-reported ethnicity associated with the ototoxic severity. CONCLUSION This study indicates a potentially protective role for the variant G alleles of SNPs rs77124181 and rs2291767 in Otos against the development of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Timothy F Spracklen
- MRC Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Diseases & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | | | | | | | | | | |
Collapse
|
3
|
Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci U S A 2010; 107:9470-5. [PMID: 20439746 DOI: 10.1073/pnas.0910794107] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The biologic underpinnings of posttraumatic stress disorder (PTSD) have not been fully elucidated. Previous work suggests that alterations in the immune system are characteristic of the disorder. Identifying the biologic mechanisms by which such alterations occur could provide fundamental insights into the etiology and treatment of PTSD. Here we identify specific epigenetic profiles underlying immune system changes associated with PTSD. Using blood samples (n = 100) obtained from an ongoing, prospective epidemiologic study in Detroit, the Detroit Neighborhood Health Study, we applied methylation microarrays to assay CpG sites from more than 14,000 genes among 23 PTSD-affected and 77 PTSD-unaffected individuals. We show that immune system functions are significantly overrepresented among the annotations associated with genes uniquely unmethylated among those with PTSD. We further demonstrate that genes whose methylation levels are significantly and negatively correlated with traumatic burden show a similar strong signal of immune function among the PTSD affected. The observed epigenetic variability in immune function by PTSD is corroborated using an independent biologic marker of immune response to infection, CMV-a typically latent herpesvirus whose activity was significantly higher among those with PTSD. This report of peripheral epigenomic and CMV profiles associated with mental illness suggests a biologic model of PTSD etiology in which an externally experienced traumatic event induces downstream alterations in immune function by reducing methylation levels of immune-related genes.
Collapse
|
4
|
Zhuo XL, Wang Y, Zhuo WL, Zhang YS, Wei YJ, Zhang XY. Adenoviral-mediated up-regulation of Otos, a novel specific cochlear gene, decreases cisplatin-induced apoptosis of cultured spiral ligament fibrocytes via MAPK/mitochondrial pathway. Toxicology 2008; 248:33-8. [PMID: 18403086 DOI: 10.1016/j.tox.2008.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 12/20/2022]
Abstract
Previous reports have implicated Otos, a novel specific gene expressed by spiral ligament fibrocytes (SLFs) with unclear functions, as a protective gene for cochlea. However, whether Otos gene could protect SLFs against cisplatin (DDP)-induced apoptosis remains largely unknown. In the present study, we utilized Adenoviral-mediated gene transfection to up-regulate Otos expression in cultured SLFs and further assessed the cell viability and apoptosis as well as possible MAPK and mitochondrial pathways. As expected, the data showed that Otos up-regulation significantly decreased apoptosis of SLFs induced by DDP possibly through activation of ERK and partial inhibition of JNK and mitochondrial pathway but not p-38 pathway, suggesting Otos as a potential protective gene for cochlea and raising the possibility of Otos up-regulation as a promising approach to DDP-induced deafness therapy.
Collapse
Affiliation(s)
- Xian-Lu Zhuo
- Department of Otolaryngology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|