Li L, Chen GD, Salvi R. Effect of antiepileptic drug levetiracetam on cochlear function.
Hear Res 2021;
415:108396. [PMID:
34903423 DOI:
10.1016/j.heares.2021.108396]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND
Levetiracetam (LEV, 5-100 mg/kg) has been shown to prevent audiogenic seizures in a dose-dependent manner. This chemical is known to bind to synaptic vesicle protein 2A and inhibit l-type calcium channels, affecting neurotransmitter release. We hypothesize that the drug prevents audiogenic seizures partially by affecting cochlear neural response.
METHODS
To test this hypothesis, rats were given 1000, 500, 50, or 0 mg/kg (saline control) LEV-injection. Distortion product otoacoustic emissions (DPOAE), reflecting outer hair cell (OHC) function, and cochlear compound action potentials (CAP), reflecting cochlear neural output, were recorded and compared pre- and post-LEV.
RESULTS
1000 mg/kg LEV-injection did not significantly affect DPOAE. The high dose LEV-injection, however, significantly reduced CAP amplitude resulting threshold shift (TS), prolonged CAP latency, and enhanced CAP forward masking. CAP latency and forward masking were significantly affected at the 500 mg/kg dose, but CAP-TS remained unchanged after LEV-injection. Interestingly, CAP latency wassignificantly prolonged, at least at the low stimulation levels, although the amplitude of CAP remained constant after a clinical dose of LEV-injection (50 mg/kg).
DISCUSSION
Since the clinical dose of LEV-injection does not reduce CAP amplitude, the reduction of cochlear neural output is unlikely to be the underlying mechanism of LEV in the treatment of audiogenic seizure. The delayed cochlear neural response may be partially related to the prevention of audiogenic seizure. However, neuropharmacological changes in the central nervous system must play a major role in the treatment of audiogenic seizure, as it does in the treatment of focal epilepsy.
Collapse