1
|
Antunes FM, Malmierca MS. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 2021; 15:721186. [PMID: 34489648 PMCID: PMC8418311 DOI: 10.3389/fncir.2021.721186] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
The corticothalamic (CT) pathways emanate from either Layer 5 (L5) or 6 (L6) of the neocortex and largely outnumber the ascending, thalamocortical pathways. The CT pathways provide the anatomical foundations for an intricate, bidirectional communication between thalamus and cortex. They act as dynamic circuits of information transfer with the ability to modulate or even drive the response properties of target neurons at each synaptic node of the circuit. L6 CT feedback pathways enable the cortex to shape the nature of its driving inputs, by directly modulating the sensory message arriving at the thalamus. L5 CT pathways can drive the postsynaptic neurons and initiate a transthalamic corticocortical circuit by which cortical areas communicate with each other. For this reason, L5 CT pathways place the thalamus at the heart of information transfer through the cortical hierarchy. Recent evidence goes even further to suggest that the thalamus via CT pathways regulates functional connectivity within and across cortical regions, and might be engaged in cognition, behavior, and perceptual inference. As descending pathways that enable reciprocal and context-dependent communication between thalamus and cortex, we venture that CT projections are particularly interesting in the context of hierarchical perceptual inference formulations such as those contemplated in predictive processing schemes, which so far heavily rely on cortical implementations. We discuss recent proposals suggesting that the thalamus, and particularly higher order thalamus via transthalamic pathways, could coordinate and contextualize hierarchical inference in cortical hierarchies. We will explore these ideas with a focus on the auditory system.
Collapse
Affiliation(s)
- Flora M. Antunes
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Ingham NJ, Itatani N, Bleeck S, Winter IM. Enhancement of forward suppression begins in the ventral cochlear nucleus. Brain Res 2016; 1639:13-27. [PMID: 26944300 PMCID: PMC4907312 DOI: 10.1016/j.brainres.2016.02.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 11/23/2022]
Abstract
A neuron׳s response to a sound can be suppressed by the presentation of a preceding sound. It has been suggested that this suppression is a direct correlate of the psychophysical phenomenon of forward masking, however, forward suppression, as measured in the responses of the auditory nerve, was insufficient to account for behavioural performance. In contrast the neural suppression seen in the inferior colliculus and auditory cortex was much closer to psychophysical performance. In anaesthetised guinea-pigs, using a physiological two-interval forced-choice threshold tracking algorithm to estimate suppressed (masked) thresholds, we examine whether the enhancement of suppression can occur at an earlier stage of the auditory pathway, the ventral cochlear nucleus (VCN). We also compare these responses with the responses from the central nucleus of the inferior colliculus (ICc) using the same preparation. In both nuclei, onset-type neurons showed the greatest amounts of suppression (16.9-33.5dB) and, in the VCN, these recovered with the fastest time constants (14.1-19.9ms). Neurons with sustained discharge demonstrated reduced masking (8.9-12.1dB) and recovery time constants of 27.2-55.6ms. In the VCN the decrease in growth of suppression with increasing suppressor level was largest for chopper units and smallest for onset-type units. The threshold elevations recorded for most unit types are insufficient to account for the magnitude of forward masking as measured behaviourally, however, onset responders, in both the cochlear nucleus and inferior colliculus demonstrate a wide dynamic range of suppression, similar to that observed in human psychophysics.
Collapse
Affiliation(s)
- Neil J Ingham
- Centre for the Neural Basis of Hearing, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| | - Naoya Itatani
- Centre for the Neural Basis of Hearing, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Stefan Bleeck
- Centre for the Neural Basis of Hearing, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Ian M Winter
- Centre for the Neural Basis of Hearing, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| |
Collapse
|
3
|
Malmierca MS, Anderson LA, Antunes FM. The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding. Front Syst Neurosci 2015; 9:19. [PMID: 25805974 PMCID: PMC4353371 DOI: 10.3389/fnsys.2015.00019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 02/02/2023] Open
Abstract
To follow an ever-changing auditory scene, the auditory brain is continuously creating a representation of the past to form expectations about the future. Unexpected events will produce an error in the predictions that should “trigger” the network’s response. Indeed, neurons in the auditory midbrain, thalamus and cortex, respond to rarely occurring sounds while adapting to frequently repeated ones, i.e., they exhibit stimulus specific adaptation (SSA). SSA cannot be explained solely by intrinsic membrane properties, but likely involves the participation of the network. Thus, SSA is envisaged as a high order form of adaptation that requires the influence of cortical areas. However, present research supports the hypothesis that SSA, at least in its simplest form (i.e., to frequency deviants), can be transmitted in a bottom-up manner through the auditory pathway. Here, we briefly review the underlying neuroanatomy of the corticofugal projections before discussing state of the art studies which demonstrate that SSA present in the medial geniculate body (MGB) and inferior colliculus (IC) is not inherited from the cortex but can be modulated by the cortex via the corticofugal pathways. By modulating the gain of neurons in the thalamus and midbrain, the auditory cortex (AC) would refine SSA subcortically, preventing irrelevant information from reaching the cortex.
Collapse
Affiliation(s)
- Manuel S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCyL), University of Salamanca Salamanca, Spain ; Faculty of Medicine, Department of Cell Biology and Pathology, University of Salamanca Salamanca, Spain
| | - Lucy A Anderson
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCyL), University of Salamanca Salamanca, Spain
| | - Flora M Antunes
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCyL), University of Salamanca Salamanca, Spain
| |
Collapse
|
4
|
Ponnath A, Farris HE. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs. Front Neural Circuits 2014; 8:85. [PMID: 25120437 PMCID: PMC4111082 DOI: 10.3389/fncir.2014.00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.
Collapse
Affiliation(s)
- Abhilash Ponnath
- Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Otolaryngology and Biocommunication, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Hamilton E Farris
- Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Otolaryngology and Biocommunication, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
5
|
|
6
|
Antunes FM, Malmierca MS. An Overview of Stimulus-Specific Adaptation in the Auditory Thalamus. Brain Topogr 2013; 27:480-99. [DOI: 10.1007/s10548-013-0342-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/05/2013] [Indexed: 12/30/2022]
|
7
|
Carrasco A, Lomber SG. Influence of inter-field communication on neuronal response synchrony across auditory cortex. Hear Res 2013; 304:57-69. [DOI: 10.1016/j.heares.2013.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 11/25/2022]
|
8
|
Carrasco A, Kok MA, Lomber SG. Effects of core auditory cortex deactivation on neuronal response to simple and complex acoustic signals in the contralateral anterior auditory field. Cereb Cortex 2013; 25:84-96. [PMID: 23960202 DOI: 10.1093/cercor/bht205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interhemispheric communication has been implicated in various functions of sensory signal processing and perception. Despite ample evidence demonstrating this phenomenon in the visual and somatosensory systems, to date, limited functional assessment of transcallosal transmission during periods of acoustic signal exposure has hindered our understanding of the role of interhemispheric connections between auditory cortical fields. Consequently, the present investigation examines the impact of core auditory cortical field deactivation on response properties of contralateral anterior auditory field (AAF) neurons in the felis catus. Single-unit responses to simple and complex acoustic signals were measured across AAF before, during, and after individual and combined cooling deactivation of contralateral primary auditory cortex (A1) and AAF neurons. Data analyses revealed that on average: 1) interhemispheric projections from core auditory areas to contralateral AAF neurons are predominantly excitatory, 2) changes in response strength vary based on acoustic features, 3) A1 and AAF projections can modulate AAF activity differently, 4) decreases in response strength are not specific to particular cortical laminae, and 5) contralateral inputs modulate AAF neuronal response thresholds. Collectively, these observations demonstrate that A1 and AAF neurons predominantly modulate AAF response properties via excitatory projections.
Collapse
Affiliation(s)
- Andres Carrasco
- Brain and Mind Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1 Cerebral Systems Laboratory, Department of Psychology, University of Western Ontario, London, ON, Canada N6A 5C2
| | - Melanie A Kok
- Brain and Mind Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1 Cerebral Systems Laboratory, Department of Psychology, University of Western Ontario, London, ON, Canada N6A 5C2
| | - Stephen G Lomber
- Brain and Mind Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1 Cerebral Systems Laboratory, Department of Psychology, University of Western Ontario, London, ON, Canada N6A 5C2
| |
Collapse
|
9
|
Wallace MN, Shackleton TM, Palmer AR. Morphological and physiological characteristics of laminar cells in the central nucleus of the inferior colliculus. Front Neural Circuits 2012; 6:55. [PMID: 22933991 PMCID: PMC3422721 DOI: 10.3389/fncir.2012.00055] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/30/2012] [Indexed: 11/13/2022] Open
Abstract
The central nucleus of the inferior colliculus (IC) is organized into a series of fibro-dendritic laminae, orthogonal to the tonotopic progression. Many neurons have their dendrites confined to one lamina while others have dendrites that cross over a number of laminae. Here, we have used juxtacellular labeling in urethane anesthetized guinea pigs to visualize the cells with biocytin and have analyzed their response properties, in order to try and link their structure and function. Out of a sample of 38 filled cells, 15 had dendrites confined within the fibro-dendritic laminae and in 13 we were also able to reconstruct their local axonal tree. Based on dendritic morphology they were subdivided into flat or less flat; small, medium, or large; elongated or disk-shaped cells. Two of the elongated cells had many dendritic spines while the other cells had few or none. Twelve of the cells had their local axonal tree restricted to the same lamina as their dendrites while one cell had its dendrites in a separate lamina from the axon. The axonal plexus was more extensive (width 0.7–1.4 mm) within the lamina than the dendrites (width generally 0.07–0.53 mm). The intrinsic axons were largely confined to a single lamina within the central nucleus, but at least half the cells also had output axons with two heading for the commissure and five heading into the brachium. We were able to identify similarities in the physiological response profiles of small groups of our filled cells but none appeared to represent a homogeneous morphological cell type. The only common feature of our sample was one of exclusion in that the onset response, a response commonly recorded from IC cells, was never seen in laminar cells, but was in cells with a stellate morphology. Thus cells with laminar dendrites have a wide variety of physiological responses and morphological subtypes, but over 90% have an extensive local axonal tree within their local lamina.
Collapse
Affiliation(s)
- Mark N Wallace
- MRC Institute of Hearing Research, Medical Research Council Nottingham, UK
| | | | | |
Collapse
|
10
|
Dabbous AO. Characteristics of auditory brainstem response latencies in children with autism spectrum disorders. ACTA ACUST UNITED AC 2012. [DOI: 10.3109/1651386x.2012.708986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 2012; 31:17306-16. [PMID: 22114297 DOI: 10.1523/jneurosci.1915-11.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An animal's survival may depend on detecting new events or objects in its environment, and it is likely that the brain has evolved specific mechanisms to detect such changes. In sensory systems, neurons often exhibit stimulus-specific adaptation (SSA) whereby they adapt to frequently occurring stimuli, but resume firing when "surprised" by rare or new ones. In the auditory system, SSA has been identified in the midbrain, thalamus, and auditory cortex (AC). It has been proposed that the SSA observed subcortically originates in the AC as a higher-order property that is transmitted to the subcortical nuclei via corticofugal pathways. Here we report that SSA in the auditory thalamus of the rat remains intact when the AC is deactivated by cooling, thus demonstrating that the AC is not necessary for the generation of SSA in the thalamus. The AC does, however, modulate the responses of thalamic neurons in a way that strongly indicates a gain modulation mechanism. The changes imposed by the AC in thalamic neurons depend on the level of SSA that they exhibit.
Collapse
|
12
|
O'Connor K. Auditory processing in autism spectrum disorder: a review. Neurosci Biobehav Rev 2011; 36:836-54. [PMID: 22155284 DOI: 10.1016/j.neubiorev.2011.11.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 10/16/2011] [Accepted: 11/25/2011] [Indexed: 12/26/2022]
Abstract
For individuals with autism spectrum disorder or 'ASD' the ability to accurately process and interpret auditory information is often difficult. Here we review behavioural, neurophysiological and imaging literature pertaining to this field with the aim of providing a comprehensive account of auditory processing in ASD, and thus an effective tool to aid further research. Literature was sourced from peer-reviewed journals published over the last two decades which best represent research conducted in these areas. Findings show substantial evidence for atypical processing of auditory information in ASD at behavioural and neural levels. Abnormalities are diverse, ranging from atypical perception of various low-level perceptual features (i.e. pitch, loudness) to processing of more complex auditory information such as prosody. Trends across studies suggest auditory processing impairments in ASD are most likely to present during processing of complex auditory information and are more severe for speech than for non-speech stimuli. The interpretation of these findings with respect to various cognitive accounts of ASD is discussed and suggestions offered for further research.
Collapse
Affiliation(s)
- K O'Connor
- Department of Communication Disorders, University of Canterbury, Christchurch 8140, New Zealand.
| |
Collapse
|
13
|
Discrimination task reveals differences in neural bases of tinnitus and hearing impairment. PLoS One 2011; 6:e26639. [PMID: 22066003 PMCID: PMC3204998 DOI: 10.1371/journal.pone.0026639] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/30/2011] [Indexed: 11/19/2022] Open
Abstract
We investigated auditory perception and cognitive processing in individuals with chronic tinnitus or hearing loss using functional magnetic resonance imaging (fMRI). Our participants belonged to one of three groups: bilateral hearing loss and tinnitus (TIN), bilateral hearing loss without tinnitus (HL), and normal hearing without tinnitus (NH). We employed pure tones and frequency-modulated sweeps as stimuli in two tasks: passive listening and active discrimination. All subjects had normal hearing through 2 kHz and all stimuli were low-pass filtered at 2 kHz so that all participants could hear them equally well. Performance was similar among all three groups for the discrimination task. In all participants, a distributed set of brain regions including the primary and non-primary auditory cortices showed greater response for both tasks compared to rest. Comparing the groups directly, we found decreased activation in the parietal and frontal lobes in the participants with tinnitus compared to the HL group and decreased response in the frontal lobes relative to the NH group. Additionally, the HL subjects exhibited increased response in the anterior cingulate relative to the NH group. Our results suggest that a differential engagement of a putative auditory attention and short-term memory network, comprising regions in the frontal, parietal and temporal cortices and the anterior cingulate, may represent a key difference in the neural bases of chronic tinnitus accompanied by hearing loss relative to hearing loss alone.
Collapse
|
14
|
Langers DRM, van Dijk P. Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. ACTA ACUST UNITED AC 2011; 22:2024-38. [PMID: 21980020 PMCID: PMC3412441 DOI: 10.1093/cercor/bhr282] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite numerous neuroimaging studies, the tonotopic organization in human auditory cortex is not yet unambiguously established. In this functional magnetic resonance imaging study, 20 subjects were presented with low-level task-irrelevant tones to avoid spread of cortical activation. Data-driven analyses were employed to obtain robust tonotopic maps. Two high-frequency endpoints were situated on the caudal and rostral banks of medial Heschl's gyrus, while low-frequency activation peaked on its lateral crest. Based on cortical parcellations, these 2 tonotopic progressions coincide with the primary auditory field (A1) in lateral koniocortex (Kl) and the rostral field (R) in medial koniocortex (Km), which together constitute a core region. Another gradient was found on the planum temporale. Our results show the bilateral existence of 3 tonotopic gradients in angulated orientations, which contrasts with colinear configurations that were suggested before. We argue that our results corroborate and elucidate the apparently contradictory findings in literature.
Collapse
Affiliation(s)
- Dave R M Langers
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, the Netherlands.
| | | |
Collapse
|
15
|
Oliver DL, Izquierdo MA, Malmierca MS. Persistent effects of early augmented acoustic environment on the auditory brainstem. Neuroscience 2011; 184:75-87. [PMID: 21496479 DOI: 10.1016/j.neuroscience.2011.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Acoustic experiences significantly shape the functional organization of the auditory cortex during postnatal "critical periods." Here, we investigate the effects of a non-traumatic augmented acoustic environment (AAE) on the central nucleus of the inferior colliculus (ICC) and lower brainstem nuclei in rat during the critical period. Our results show that an AAE during P9-P28 had a persistent effect on the evoked auditory brainstem responses leading to a decreased latency and an increased amplitude of the response at and above the frequency of the stimulus used for the AAE. These findings are correlated with increased numbers of sites in the ICC that responded to the AAE frequency and show higher thresholds. There also were persistent effects in neurons with a best frequency higher than the AAE stimulus. These neurons showed decreased activity at low sound levels in the low frequency tail of the frequency response area. This was at, below and above the AAE stimulus frequency. Less often, increased activity at higher sound levels also was seen. Together, these findings suggest multifaceted interactions between activity-dependent plasticity, homeostasis, and development in the brainstem during the initial stages of hearing. A neonate exposed to an altered auditory environment may experience long-lasting change over the entire network of the auditory system.
Collapse
Affiliation(s)
- D L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | |
Collapse
|
16
|
Reciprocal modulatory influences between tonotopic and nontonotopic cortical fields in the cat. J Neurosci 2010; 30:1476-87. [PMID: 20107075 DOI: 10.1523/jneurosci.5708-09.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional and anatomical studies suggest that acoustic signals are processed hierarchically in auditory cortex. Although most regions of acoustically responsive cortex are not tonotopically organized, all previous electrophysiological investigations of interfield interactions have only examined tonotopically represented areas. The purpose of the present study was to investigate the functional interactions between tonotopically and nontonotopically organized fields in auditory cortex. We accomplished this goal by examining the bidirectional contributions between the cochleotopically organized primary auditory cortex (A1) and the noncochleotopically organized second auditory field (A2). Multiunit acute recording procedures in combination with reversible cooling deactivation techniques were used in eight mature cats. The synaptic activity of A1 or A2 was suppressed while the neuronal response to tonal stimuli of the noninactivated area (A1 or A2) was measured. Response strength, neuronal threshold, receptive field bandwidths, and latency measures were collected at each recorded site before, during, and after cooling deactivation epochs. Our analysis revealed comparable changes in A1 and A2 neuronal response properties. Specifically, significant decreases in neuronal response strength, increases in neuronal threshold, and shortening of response latency were found in both fields during periods of cooling deactivation. The weak anatomical connections between the two fields investigated make these findings unexpected. Furthermore, the observed neuronal changes suggest a model of corticocortical interaction among auditory fields in which neither differences in the magnitude of anatomical projections nor cortical representation of sensory stimuli are reliable determinants of modulatory functions.
Collapse
|
17
|
Nakamoto KT, Shackleton TM, Palmer AR. Responses in the inferior colliculus of the guinea pig to concurrent harmonic series and the effect of inactivation of descending controls. J Neurophysiol 2010; 103:2050-61. [PMID: 20147418 DOI: 10.1152/jn.00451.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the fundamental questions of auditory research is how sounds are segregated because, in natural environments, multiple sounds tend to occur at the same time. Concurrent sounds, such as two talkers, physically add together and arrive at the ear as a single input sound wave. The auditory system easily segregates this input into a coherent perception of each of the multiple sources. A common feature of speech and communication calls is their harmonic structure and in this report we used two harmonic complexes to study the role of the corticofugal pathway in the processing of concurrent sounds. We demonstrate that, in the inferior colliculus (IC) of the anesthetized guinea pig, deactivation of the auditory cortex altered the temporal and/or the spike response to the concurrent, monaural harmonic complexes. More specifically, deactivating the auditory cortex altered the representation of the relative level of the complexes. This suggests that the auditory cortex modulates the representation of the level of two harmonic complexes in the IC. Since sound level is a cue used in the segregation of auditory input, the corticofugal pathway may play a role in this segregation.
Collapse
Affiliation(s)
- Kyle T Nakamoto
- College of Medicine, Northeastern Ohio Universities, 4209 State Rt. 44, P.O. Box 95, Rootstown, OH 44272-0095, USA.
| | | | | |
Collapse
|
18
|
Evidence for hierarchical processing in cat auditory cortex: nonreciprocal influence of primary auditory cortex on the posterior auditory field. J Neurosci 2009; 29:14323-33. [PMID: 19906979 DOI: 10.1523/jneurosci.2905-09.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The auditory cortex of the cat is composed of 13 distinct fields that have been defined on the basis of anatomy, physiology, and behavior. Although an anatomically based hierarchical processing scheme has been proposed in auditory cortex, few functional studies have examined how these areas influence one another. The purpose of the present study was to examine the bidirectional processing contributions between primary auditory cortex (A1) and the nonprimary posterior auditory field (PAF). Multiunit acute recording techniques in eight mature cats were used to measure neuronal responses to tonal stimuli in A1 or PAF while synaptic activity from PAF or A1 was suppressed with reversible cooling deactivation techniques. Specifically, in four animals, electrophysiological recordings in A1 were conducted before, during, and after deactivation of PAF. Similarly, in the other four animals, PAF activity was measured before, during, and after deactivation of A1. The characteristic frequency, bandwidth, and neuronal threshold were calculated at each receptive field collected and the response strength and response latency measures were calculated from cumulative peristimulus time histograms. Two major changes in PAF response properties were observed during A1 deactivation: a decrease in response strength and a reduction in receptive field bandwidths. In comparison, we did not identify any significant changes in A1 neuronal responses during deactivation of PAF neurons. These findings support proposed models of hierarchal processing in cat auditory cortex.
Collapse
|
19
|
Differential modulatory influences between primary auditory cortex and the anterior auditory field. J Neurosci 2009; 29:8350-62. [PMID: 19571126 DOI: 10.1523/jneurosci.6001-08.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroanatomical studies have revealed a vast network of corticocortical connections among the various fields that form cat auditory cortex. However, few studies have explored the functional communicative properties of these connections. The purpose of the present study was to examine the bidirectional processing contributions between the primary auditory cortex (A1) and the nonprimary anterior auditory field (AAF). Using acute recording techniques, multiunit neuronal activity was collected from the right hemisphere of nine mature cats. Cortical maps were generated, and the precise location of A1 and AAF was identified. Subsequently, the synaptic activity of A1 or AAF was suppressed with reversible thermal deactivation procedures while the neuronal response to tonal stimuli of the non-inactivated area (A1 or AAF) was measured. We examined response strength and latency, characteristic frequency, bandwidth, and neuronal threshold of A1 and AAF receptive fields before and during epochs of deactivation. Three major changes in A1 response properties were observed during AAF neuronal suppression: a decrease in response strength, an increase in neuronal thresholds, and a sharpening of receptive field bandwidths. In contrast, A1 deactivation did not produce any discernible changes in AAF neuronal responses. Collectively, these results suggest that the modulation of acoustic information between A1 and AAF in cat auditory cortex is dominated by a unidirectional AAF to A1 pathway.
Collapse
|
20
|
|
21
|
Moore DR, Halliday LF, Amitay S. Use of auditory learning to manage listening problems in children. Philos Trans R Soc Lond B Biol Sci 2009; 364:409-20. [PMID: 18986969 PMCID: PMC2674471 DOI: 10.1098/rstb.2008.0187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This paper reviews recent studies that have used adaptive auditory training to address communication problems experienced by some children in their everyday life. It considers the auditory contribution to developmental listening and language problems and the underlying principles of auditory learning that may drive further refinement of auditory learning applications. Following strong claims that language and listening skills in children could be improved by auditory learning, researchers have debated what aspect of training contributed to the improvement and even whether the claimed improvements reflect primarily a retest effect on the skill measures. Key to understanding this research have been more circumscribed studies of the transfer of learning and the use of multiple control groups to examine auditory and non-auditory contributions to the learning. Significant auditory learning can occur during relatively brief periods of training. As children mature, their ability to train improves, but the relation between the duration of training, amount of learning and benefit remains unclear. Individual differences in initial performance and amount of subsequent learning advocate tailoring training to individual learners. The mechanisms of learning remain obscure, especially in children, but it appears that the development of cognitive skills is of at least equal importance to the refinement of sensory processing. Promotion of retention and transfer of learning are major goals for further research.
Collapse
Affiliation(s)
- David R Moore
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK.
| | | | | |
Collapse
|
22
|
Balaguer-Ballester E, Clark NR, Coath M, Krumbholz K, Denham SL. Understanding pitch perception as a hierarchical process with top-down modulation. PLoS Comput Biol 2009; 5:e1000301. [PMID: 19266015 PMCID: PMC2639722 DOI: 10.1371/journal.pcbi.1000301] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 01/23/2009] [Indexed: 11/18/2022] Open
Abstract
Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing.
Collapse
Affiliation(s)
- Emili Balaguer-Ballester
- Centre for Theoretical and Computational Neuroscience, University of Plymouth, Plymouth, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Effects of microinjections of apomorphine and haloperidol into the inferior colliculus on the latent inhibition of the conditioned emotional response. Exp Neurol 2009; 216:16-21. [DOI: 10.1016/j.expneurol.2008.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/28/2008] [Accepted: 10/30/2008] [Indexed: 11/20/2022]
|
24
|
Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task. J Neurosci 2008; 28:4929-37. [PMID: 18463246 DOI: 10.1523/jneurosci.0902-08.2008] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An extensive corticofugal system extends from the auditory cortex toward subcortical nuclei along the auditory pathway. Corticofugal influences reach even into the inner ear via the efferents of the olivocochlear bundle, the medial branch of which modulates preneural sound amplification gain. This corticofugal system is thought to contribute to neuroplasticity underlying auditory perceptual learning. In the present study, we investigated the involvement of the medial olivocochlear bundle (MOCB) in perceptual learning as a result of auditory training. MOCB activity was monitored in normal-hearing adult listeners during a 5 d training regimen on a consonant-vowel phoneme-in-noise discrimination task. The results show significant group learning, with great inter-individual variability in initial performance and improvement. As observed in previous auditory training studies, poor initial performers tended to show greater learning. Strikingly, MOCB activity measured on the first training day strongly predicted the subsequent amount of improvement, such that weaker initial MOCB activity was associated with greater improvement. Moreover, in listeners that improved significantly, an increase in MOCB activity was observed after training. Thus, as discrimination thresholds of listeners converged over the course of training, differences in MOCB activity between listeners decreased. Additional analysis showed that MOCB activity did not explain variation in performance between listeners on any training day but rather reflected an individual listener's performance relative to their personal optimal range. The findings suggest an MOCB-mediated listening strategy that facilitates speech-in-noise perception. The operation of this strategy is flexible and susceptible to training, presumably because of task-related adaptation of descending control from the cortex.
Collapse
|
25
|
Song JH, Banai K, Kraus N. Brainstem timing deficits in children with learning impairment may result from corticofugal origins. Audiol Neurootol 2008; 13:335-44. [PMID: 18493120 DOI: 10.1159/000132689] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 02/01/2008] [Indexed: 11/19/2022] Open
Abstract
A substantial proportion of children with language-based learning problems [learning disabilities (LD)] display abnormal encoding of speech at rostral levels of the auditory brainstem (i.e. midbrain) as measured by the auditory brainstem response (ABR). Of interest here is whether these timing deficits originate at the rostral brainstem or whether they reflect deficient sensory encoding at lower levels of the auditory pathway. We describe the early brainstem response to speech (waves I and III) in typically developing 8- to 12-year-old children and children with LD. We then focus on the early brainstem responses in children with LD found to show abnormal components of the rostral speech-evoked ABR (waves V and A). We found that wave I was not reliably evoked using our speech stimulus and recording parameters in either typically developing children or those with LD. Wave III was reliably evoked in the large majority of subjects in both groups and its timing did not differ between them. These data are consistent with the view that the auditory deficits in the majority of LD children with abnormal speech-evoked ABR originate from corticofugal modulation of subcortical activity.
Collapse
Affiliation(s)
- Judy H Song
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, Evanston, Ill., USA.
| | | | | |
Collapse
|
26
|
Altmann CF, Henning M, Döring MK, Kaiser J. Effects of feature-selective attention on auditory pattern and location processing. Neuroimage 2008; 41:69-79. [DOI: 10.1016/j.neuroimage.2008.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/30/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022] Open
|
27
|
Sumner CJ, Palmer AR, Moore DR. The need for a cool head: reversible inactivation reveals functional segregation in auditory cortex. Nat Neurosci 2008; 11:530-1. [PMID: 18437190 DOI: 10.1038/nn0508-530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Nakamoto KT, Jones SJ, Palmer AR. Descending projections from auditory cortex modulate sensitivity in the midbrain to cues for spatial position. J Neurophysiol 2008; 99:2347-56. [PMID: 18385487 DOI: 10.1152/jn.01326.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function of the profuse descending innervation from the auditory cortex is largely unknown; however, recent studies have demonstrated that focal stimulation of auditory cortex effects frequency tuning curves, duration tuning, and other auditory parameters in the inferior colliculus. Here we demonstrate that, in an anesthetized guinea pig, nonfocal deactivation of the auditory cortex alters the sensitivity of populations of neurons in the inferior colliculus (IC) to one of the major cues for the localization of sound in space, interaural level differences (ILDs). Primary and secondary auditory cortical areas were inactivated by cooling. The ILD functions of 46% of IC cells changed when the cortex was inactivated. In extreme cases, the ILD functions changed from monotonic to nonmonotonic during cooling and vice versa. Eight percent of the cells became unresponsive after deactivation of the auditory cortex. Deactivation of the cortex has previously been shown to alter the maximum spike count of cells in the IC; the change in normalized ILD functions is shown to be separate from this effect. In some cases, the ILD function changed shape when there was no change in the maximum spike count and in other cases there was no change in the shape of the ILD function even though there was a large change in the maximum spike count. Overall, the sensitivity of the IC neural population to ILD is radically altered by the corticofugal pathway.
Collapse
Affiliation(s)
- Kyle T Nakamoto
- MRC Institute of Hearing Research, University Park, Nottingham, UK.
| | | | | |
Collapse
|