Lu H, Wang X, Sun W, Hu Y, Gong S. New insights into glutamate ototoxicity in cochlear hair cells and spiral ganglion neurons.
Acta Otolaryngol 2010;
130:1316-23. [PMID:
20632907 DOI:
10.3109/00016489.2010.495133]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION
Excess glutamate (Glu) exposure (20 mM) in the cochlear perilymph affects the physiological function of outer hair cells (OHCs) within a 2 h period and induces apoptosis in the modiolus spiral ganglion neurons (SGNs) in an apoptosis-inducing factor (AIF)-dependent manner.
OBJECTIVES
To determine whether high-dose Glu affects the function of OHCs and whether it induces AIF- and caspase-3-dependent apoptosis in the cochlear SGNs.
METHODS
Perilymphatic perfusions of Glu (20 mM) and artificial perilymph (AP) solutions were performed in adult guinea pig cochleae. Both cochlear microphonics (CM) and electrical auditory brainstem response (eABR) were measured before and 2 h after perfusions. The hair cell morphologies were examined using transmission electron microscopy. The expression of two apoptotic indicators, AIF and caspase-3, was examined 8 h after perfusions.
RESULTS
In contrast to AP perfusions, the perfusion of 20 mM Glu caused significant reduction in the CM and eABR amplitudes. Inner hair cells (IHCs) after Glu perfusion were deformed and exhibited vacuolization in the postsynaptic region, whereas the OHC system appeared unaffected. AIF expression was detected in the nuclei of SGNs 8 h after Glu exposure, but the expression of caspase-3 was not shown in any cochlear tissues.
Collapse