1
|
Zhang F, Liu Q, Gong P, Wang Y, Shi C, Zhu L, Zhao J, Yao W, Luo J. Genome-wide association study provided insights into the polled phenotype and polled intersex syndrome (PIS) in goats. BMC Genomics 2024; 25:661. [PMID: 38956513 PMCID: PMC11218382 DOI: 10.1186/s12864-024-10568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Breeding polled goats is a welfare-friendly approach for horn removal in comparison to invasive methods. To gain a comprehensive understanding of the genetic basis underlying polledness in goats, we conducted whole-genome sequencing of 106 Xinong Saanen dairy goats, including 33 horned individuals, 70 polled individuals, and 3 polled intersexuality syndrome (PIS) individuals. METHODS The present study employed a genome-wide association study (GWAS) and linkage disequilibrium (LD) analysis to precisely map the genetic locus underlying the polled phenotype in goats. RESULTS The analysis conducted in our study revealed a total of 320 genome-wide significant single nucleotide polymorphisms (SNPs) associated with the horned/polled phenotype in goats. These SNPs exhibited two distinct peaks on chromosome 1, spanning from 128,817,052 to 133,005,441 bp and from 150,336,143 to 150,808,639 bp. The present study identified three genome-wide significant SNPs, namely Chr1:129789816, Chr1:129791507, and Chr1:129791577, as potential markers of PIS-affected goats. The results of our LD analysis suggested a potential association between MRPS22 and infertile intersex individuals, as well as a potential association between ERG and the polled trait in goats. CONCLUSION We have successfully identified three marker SNPs closely linked to PIS, as well as several candidate genes associated with the polled trait in goats. These results may contribute to the development of SNP chips for early prediction of PIS in goats, thereby facilitating breeding programs aimed at producing fertile herds with polled traits.
Collapse
Affiliation(s)
- Fuhong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Qingqing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumchi, 830000, P. R. China
| | - Yaling Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Chenbo Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Lu Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Jianqing Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Weiwei Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| |
Collapse
|
2
|
Cipriani V, Vestito L, Magavern EF, Jacobsen JO, Arno G, Behr ER, Benson KA, Bertoli M, Bockenhauer D, Bowl MR, Burley K, Chan LF, Chinnery P, Conlon P, Costa M, Davidson AE, Dawson SJ, Elhassan E, Flanagan SE, Futema M, Gale DP, García-Ruiz S, Corcia CG, Griffin HR, Hambleton S, Hicks AR, Houlden H, Houlston RS, Howles SA, Kleta R, Lekkerkerker I, Lin S, Liskova P, Mitchison H, Morsy H, Mumford AD, Newman WG, Neatu R, O'Toole EA, Ong AC, Pagnamenta AT, Rahman S, Rajan N, Robinson PN, Ryten M, Sadeghi-Alavijeh O, Sayer JA, Shovlin CL, Taylor JC, Teltsh O, Tomlinson I, Tucci A, Turnbull C, van Eerde AM, Ware JS, Watts LM, Webster AR, Westbury SK, Zheng SL, Caulfield M, Smedley D. Rare disease gene association discovery from burden analysis of the 100,000 Genomes Project data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.20.23300294. [PMID: 38196618 PMCID: PMC10775325 DOI: 10.1101/2023.12.20.23300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of β cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery.
Collapse
|
3
|
Priyadarshi S, Hansdah K, Singh N, Bouzid A, Ray CS, Panda KC, Biswal NC, Desai A, Choudhury JC, Tekari A, Masmoudi S, Ramchander PV. The risks of RELN polymorphisms and its expression in the development of otosclerosis. PLoS One 2022; 17:e0269558. [PMID: 35658052 PMCID: PMC9165908 DOI: 10.1371/journal.pone.0269558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Otosclerosis (OTSC) is the primary form of conductive hearing loss characterized by abnormal bone remodelling within the otic capsule of the human middle ear. A genetic association of the RELN SNP rs3914132 with OTSC has been identified in European population. Previously, we showed a trend towards association of this polymorphism with OTSC and identified a rare variant rs74503667 in a familial case. Here, we genotyped these variants in an Indian cohort composed of 254 OTSC cases and 262 controls. We detected a significant association of rs3914132 with OTSC (OR = 0.569, 95%CI = 0.386–0.838, p = 0.0041). To confirm this finding, we completed a meta-analysis which revealed a significant association of the rs3914132 polymorphism with OTSC (Z = 6.707, p<0.0001) across different ethnic populations. Linkage analysis found the evidence of linkage at RELN locus (LOD score 2.1059) in the OTSC family which has shown the transmission of rare variant rs74503667 in the affected individuals. To understand the role of RELN and its receptors in the development of OTSC, we went further to perform a functional analysis of RELN/reelin. Here we detected a reduced RELN (p = 0.0068) and VLDLR (p = 0.0348) mRNA levels in the otosclerotic stapes tissues. Furthermore, a reduced reelin protein expression by immunohistochemistry was confirmed in the otosclerotic tissues. Electrophoretic mobility shift assays for rs3914132 and rs74503667 variants revealed an altered binding of transcription factors in the mutated sequences which indicates the regulatory role of these variations in the RELN gene regulation. Subsequently, we showed by scanning electron microscopy a change in stapes bone morphology of otosclerotic patients. In conclusion, this study evidenced that the rare variation rs74503667 and the common polymorphism rs3914132 in the RELN gene and its reduced expressions that were associated with OTSC.
Collapse
Affiliation(s)
- Saurabh Priyadarshi
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, India
| | - Kirtal Hansdah
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, India
| | - Neha Singh
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, India
| | - Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Chinmay Sundar Ray
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanj (SCB) Medical College & Hospital, Cuttack, India
| | | | - Narayan Chandra Biswal
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanj (SCB) Medical College & Hospital, Cuttack, India
| | - Ashim Desai
- Dr. ABR Desai Ear, Nose and Throat (ENT) Clinic and Research Centre, Mumbai, India
| | - Jyotish Chandra Choudhury
- Department of Forensic Medicine & Toxicology (FMT), Shrirama Chandra Bhanj (SCB) Medical College & Hospital, Cuttack, India
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | | |
Collapse
|
4
|
Guo J, Jiang R, Mao A, Liu GE, Zhan S, Li L, Zhong T, Wang L, Cao J, Chen Y, Zhang G, Zhang H. Genome-wide association study reveals 14 new SNPs and confirms two structural variants highly associated with the horned/polled phenotype in goats. BMC Genomics 2021; 22:769. [PMID: 34706644 PMCID: PMC8555091 DOI: 10.1186/s12864-021-08089-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Background There is a long-term interest in investigating the genetic basis of the horned/polled phenotype in domestic goats. Here, we report a genome-wide association study (GWAS) to detect the genetic loci affecting the polled phenotype in goats. Results We obtained a total of 13,980,209 biallelic SNPs, using the genotyping-by-sequencing data from 45 Jintang Black (JT) goats, which included 32 female and nine male goats, and four individuals with the polled intersex syndrome (PIS). Using a mixed-model based GWAS, we identified two association signals, which were located at 150,334,857–150,817,260 bp (P = 5.15 × 10− 119) and 128,286,704–131,306,537 bp (P = 2.74 × 10− 15) on chromosome 1. The genotype distributions of the 14 most significantly associated SNPs were completely correlated with horn status in goats, based on the whole-genome sequencing (WGS) data from JT and two other Chinese horned breeds. However, variant annotation suggested that none of the detected SNPs within the associated regions were plausible causal mutations. Via additional read-depth analyses and visual inspections of WGS data, we found a 10.1-kb deletion (CHI1:g. 129424781_129434939del) and a 480-kb duplication (CHI1:150,334,286–150,818,098 bp) encompassing two genes KCNJ15 and ERG in the associated regions of polled and PIS-affected goats. Notably, the 10.1-kb deletion also served as the insertion site for the 480-kb duplication, as validated by PCR and Sanger sequencing. Our WGS genotyping showed that all horned goats were homozygous for the reference alleles without either the structural variants (SVs), whereas the PIS-affected goats were homozygous for both the SVs. We also demonstrated that horned, polled, and PIS-affected individuals among 333 goats from JT and three other Chinese horned breeds can be accurately classified via PCR amplification and agarose gel electrophoresis of two fragments in both SVs. Conclusion Our results revealed that two genomic regions on chromosome 1 are major loci affecting the polled phenotypes in goats. We provided a diagnostic PCR to accurately classify horned, polled, and PIS-affected goats, which will enable a reliable genetic test for the early-in-life prediction of horn status in goats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08089-w.
Collapse
Affiliation(s)
- Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ayi Mao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Siyuan Zhan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaxue Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Chen
- Nanjiang Yellow Goat Scientific Research Institute, Bazhong, 635600, China
| | - Guojun Zhang
- Nanjiang Yellow Goat Scientific Research Institute, Bazhong, 635600, China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Álvarez FJ, García P, Alonso J, Álvarez S. Evaluation of Gene Variants in TGFB1, SERPINF1 and MEPE in a Spanish Family Affected by Otosclerosis and Tinnitus. BIONATURA 2020. [DOI: 10.21931/rb/20120.05.01.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Otosclerosis (OTSC) is a common type of deafness affecting up to 0.4 % of Caucasians. Its familial form is inherited in an autosomal dominant fashion, although to this date, no definitive cause for OTSC has been found. In the development of OTSC, three recent genetic association studies have suggested the participation of particular point mutations and small indels in the TGFB1, SERPINF1, and MEPE genes. Consequently, replicative studies are needed to confirm the role of the proposed mutations in OTSC patients. The goal of this study was to test the presence of the candidate variants described in the genes TGFB1, SERPINF1, and MEPE in a new case of familial OTSC with seven affected individuals. DNA was extracted from saliva samples of a Spanish family with several members affected by OTSC. PCR amplified target regions of some candidate genes, and the products were purified, Sanger-sequenced, and analyzed in silico. The family subject of the study did not carry the candidate variants for OTSC described in the genes TGFB1, SERPINF1, and MEPE, although it cannot be ruled out the involvement of other mutations in genes related to their same signaling pathways. This result highlights the importance of performing replicative studies for complex diseases, such as OTCS, in families of diverse origins. Additionally, a significant association of subjective tinnitus with OTSC has been found in this family, although the link between the two pathologies should be studied further.
Collapse
Affiliation(s)
- Francisco J. Álvarez
- Escuela de Ciencias Biológicas e Ingeniería Universidad Yachay Tech Urcuquí, Imbabura 100115 EcuadorEscuela de Ciencias Biológicas e Ingeniería Universidad Yachay Tech Urcuquí, Imbabura 100115 Ecuador
| | - Pedro García
- Área de Genética Departamento de Biología Molecular Universidad de León 24071 León, Spain
| | - Jesús Alonso
- Complejo Asistencial Universitario de León C/Altos de Nava s/n 24080 León, Spain
| | | |
Collapse
|
6
|
Cheung K, Barter MJ, Falk J, Proctor CJ, Reynard LN, Young DA. Histone ChIP-Seq identifies differential enhancer usage during chondrogenesis as critical for defining cell-type specificity. FASEB J 2020; 34:5317-5331. [PMID: 32058623 PMCID: PMC7187454 DOI: 10.1096/fj.201902061rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms are known to regulate gene expression during chondrogenesis. In this study, we have characterized the epigenome during the in vitro differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes. Chromatin immunoprecipitation followed by next‐generation sequencing (ChIP‐seq) was used to assess a range of N‐terminal posttranscriptional modifications (marks) to histone H3 lysines (H3K4me3, H3K4me1, H3K27ac, H3K27me3, and H3K36me3) in both hMSCs and differentiated chondrocytes. Chromatin states were characterized using histone ChIP‐seq and cis‐regulatory elements were identified in chondrocytes. Chondrocyte enhancers were associated with chondrogenesis‐related gene ontology (GO) terms. In silico analysis and integration of DNA methylation data with chondrogenesis chromatin states revealed that enhancers marked by histone marks H3K4me1 and H3K27ac were de‐methylated during in vitro chondrogenesis. Similarity analysis between hMSC and chondrocyte chromatin states defined in this study with epigenomes of cell‐types defined by the Roadmap Epigenomics project revealed that enhancers are more distinct between cell‐types compared to other chromatin states. Motif analysis revealed that the transcription factor SOX9 is enriched in chondrocyte enhancers. Luciferase reporter assays confirmed that chondrocyte enhancers characterized in this study exhibited enhancer activity which may be modulated by DNA methylation and SOX9 overexpression. Altogether, these integrated data illustrate the cross‐talk between different epigenetic mechanisms during chondrocyte differentiation.
Collapse
Affiliation(s)
- Kathleen Cheung
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK.,Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Barter
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Julia Falk
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Carole J Proctor
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - Louise N Reynard
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | - David A Young
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Utility of Perilymph microRNA Sampling for Identification of Active Gene Expression Pathways in Otosclerosis. Otol Neurotol 2019; 40:710-719. [DOI: 10.1097/mao.0000000000002243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
|
9
|
Ziff JL, Crompton M, Powell HRF, Lavy JA, Aldren CP, Steel KP, Saeed SR, Dawson SJ. Mutations and altered expression of SERPINF1 in patients with familial otosclerosis. Hum Mol Genet 2016; 25:2393-2403. [PMID: 27056980 PMCID: PMC5181625 DOI: 10.1093/hmg/ddw106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/08/2023] Open
Abstract
Otosclerosis is a relatively common heterogenous condition, characterized by abnormal bone remodelling in the otic capsule leading to fixation of the stapedial footplate and an associated conductive hearing loss. Although familial linkage and candidate gene association studies have been performed in recent years, little progress has been made in identifying disease-causing genes. Here, we used whole-exome sequencing in four families exhibiting dominantly inherited otosclerosis to identify 23 candidate variants (reduced to 9 after segregation analysis) for further investigation in a secondary cohort of 84 familial cases. Multiple mutations were found in the SERPINF1 (Serpin Peptidase Inhibitor, Clade F) gene which encodes PEDF (pigment epithelium-derived factor), a potent inhibitor of angiogenesis and known regulator of bone density. Six rare heterozygous SERPINF1 variants were found in seven patients in our familial otosclerosis cohort; three are missense mutations predicted to be deleterious to protein function. The other three variants are all located in the 5′-untranslated region (UTR) of an alternative spliced transcript SERPINF1-012. RNA-seq analysis demonstrated that this is the major SERPINF1 transcript in human stapes bone. Analysis of stapes from two patients with the 5′-UTR mutations showed that they had reduced expression of SERPINF1-012. All three 5′-UTR mutations are predicted to occur within transcription factor binding sites and reporter gene assays confirmed that they affect gene expression levels. Furthermore, RT-qPCR analysis of stapes bone cDNA showed that SERPINF1-012 expression is reduced in otosclerosis patients with and without SERPINF1 mutations, suggesting that it may be a common pathogenic pathway in the disease.
Collapse
Affiliation(s)
- Joanna L Ziff
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Michael Crompton
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Harry R F Powell
- Royal National Throat Nose and Ear Hospital, London WC1X 8EE, UK
| | - Jeremy A Lavy
- Royal National Throat Nose and Ear Hospital, London WC1X 8EE, UK
| | | | | | - Shakeel R Saeed
- UCL Ear Institute, University College London, London WC1X 8EE, UK.,Royal National Throat Nose and Ear Hospital, London WC1X 8EE, UK
| | - Sally J Dawson
- UCL Ear Institute, University College London, London WC1X 8EE, UK,
| |
Collapse
|
10
|
Priyadarshi S, Ray CS, Biswal NC, Nayak SR, Panda KC, Desai A, Ramchander PV. Genetic association and altered gene expression of osteoprotegerin in otosclerosis patients. Ann Hum Genet 2015; 79:225-37. [PMID: 25998045 DOI: 10.1111/ahg.12118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
Otosclerosis (OTSC) is a late-onset hearing disorder characterized by increased bone turnover in the otic capsule. Disturbed osteoprotegerin expression has been found in the otosclerotic foci which may have an important role in the pathogenesis of OTSC. To identify the genetic risk factors, we sequenced the coding region and exon-intron boundaries of the OPG gene in 254 OTSC patients and 262 controls. Sequence analysis identified five known polymorphisms c.9C>G, c.30+15C>T, c.400+4C>T, c.768A>G, and c.817+8A>C. Testing of these SNPs revealed sex specific association with c.9C>G in males and c.30+15C>T in females after multiple correction. Furthermore, meta-analysis provided evidence of association of the c.9C>G polymorphism with OTSC. In secondary analysis, we investigated the mRNA expression of OPG and associated genes RANK and RANKL in otosclerotic tissues compared to controls. Expression analysis revealed significantly missing/reduced OPG expression only in otosclerotic tissues. However, the signal sequence polymorphism c.9C>G has shown no effect on OPG mRNA expression. In conclusion, our results suggest that the risk of OTSC is influenced by variations in the OPG gene along with other factors which might regulate its altered expression in otosclerotic tissues. Further research is warranted to elucidate the mechanisms underlying these observations.
Collapse
Affiliation(s)
- Saurabh Priyadarshi
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, India
| | - Chinmay Sundar Ray
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanj (SCB) Medical College, Cuttack, India
| | - Narayan Chandra Biswal
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanj (SCB) Medical College, Cuttack, India
| | - Soumya Ranjan Nayak
- Department of Forensic Medicine & Toxicology (FMT), Shrirama Chandra Bhanj (SCB) Medical College, Cuttack, India
| | | | - Ashim Desai
- Dr. ABR Desai Ear, Nose and Throat (ENT) Clinic and Research Centre, Mumbai, India
| | | |
Collapse
|
11
|
Gronowicz G, Richardson YL, Flynn J, Kveton J, Eisen M, Leonard G, Aronow M, Rodner C, Parham K. Differences in Otosclerotic and Normal Human Stapedial Osteoblast Properties Are Normalized by Alendronate in Vitro. Otolaryngol Head Neck Surg 2014; 151:657-66. [DOI: 10.1177/0194599814544889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective Identify and compare phenotypic properties of osteoblasts from patients with otosclerosis (OSO), normal bones (HOB), and normal stapes (NSO) to determine a possible cause for OSO hypermineralization and assess any effects of the bisphosphonate, alendronate. Study Design OSO (n = 11), NSO (n = 4), and HOB (n = 13) cultures were assayed for proliferation, adhesion, mineralization, and gene expression with and without 10–10M-10–8M alendronate. Setting Academic hospital. Methods Cultures were matched for age, sex, and passage number. Cell attachment and proliferation + alendronate were determined by Coulter counting cells and assaying tritiated thymidine uptake, respectively. At 7, 14, and 21 days of culture + alendronate, calcium content and gene expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were determined. Results OSO had significantly more cells adhere but less proliferation than NSO or HOB. Calcification was significantly increased in OSO compared to HOB and NSO. NSO and HOB had similar cell adhesion and proliferation rates. A dose-dependent effect of alendronate on OSO adhesion, proliferation, and mineralization was found, resulting in levels equal to NSO and HOB. All cultures expressed osteoblast-specific genes such as RUNX2, alkaline phosphatase, type I collagen, and osteocalcin. However, osteopontin was dramatically reduced, 9.4-fold at 14 days, in OSO compared to NSO. Receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG), important in bone resorption, was elevated in OSO with decreased levels of OPG levels. Alendronate had little effect on gene expression in HOB but in OSO increased osteopontin levels and decreased RANKL/OPG. Conclusions OSO cultures displayed properties of hypermineralization due to decreased osteopontin (OPN) and also had increased RANKL/OPG, which were normalized by alendronate.
Collapse
Affiliation(s)
- Gloria Gronowicz
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - John Flynn
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - John Kveton
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marc Eisen
- Hartford Hospital, Hartford, Connecticut, USA
| | - Gerald Leonard
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Craig Rodner
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kourosh Parham
- University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
12
|
Bast F, Mazurek B, Schrom T. Effect of stapedotomy on pre-operative tinnitus and its psychosomatic burden. Auris Nasus Larynx 2013; 40:530-3. [DOI: 10.1016/j.anl.2013.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
13
|
Priyadarshi S, Ray CS, Panda KC, Desai A, Nayak SR, Biswal NC, Ramchander PV. Genetic association and gene expression profiles of TGFB1 and the contribution of TGFB1 to otosclerosis susceptibility. J Bone Miner Res 2013; 28:2490-7. [PMID: 23703862 DOI: 10.1002/jbmr.1991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/25/2013] [Accepted: 05/15/2013] [Indexed: 12/15/2022]
Abstract
Otosclerosis (OTSC) is a common form of acquired hearing loss resulting from disturbed bone remodeling in the otic capsule of the middle ear. Transforming growth factor-beta1 (TGFB1) produced by osteoblasts is the most abundant growth factor in human bone. Previous studies have shown the contribution of single-nucleotide polymorphisms (SNPs) in TGFB1 toward the risk of developing OTSC in some ethnic populations. The present study was aimed at investigating the genetic association and expression profiles of TGFB1 in OTSC patients. Two SNPs (c.-800G > A and c.-509C > T) in the promoter region and three SNPs (c.29T > C, c.74G > C, and c.788C > T) in the coding region were genotyped in 170 cases and 170 controls. The genetic association analysis revealed the significant association between c.-509C > T (p = 0.0067; odds ratio [OR] = 1.562; 95% confidence interval [CI], 1.140-2.139) and OTSC. The increased minor allele "T" frequency in cases (0.42) compared to controls (0.31) indicates its possible role in the etiology of the disease. The minor allele frequencies for the SNPs c.-800G > A, c.29T > C, and c.74G >C were similar among the cases (0.04, 0.47, and 0.08, respectively) and controls (0.05, 0.42, 0.07, respectively). We found that c.788C > T was monomorphic in this population. Interestingly, a four-locus haplotype (G-T-T-G) from these SNPs was found to be significantly associated with OTSC (p = 0.0077). We identified a de novo heterozygous mutation c.-832G > A in the promoter region of TGFB1 in 1 patient. In a secondary analysis, we investigated the possibility of abnormal TGFB1 expression and irregular bone growth in OTSC by expression analysis of TGFB1 mRNA in disease tissue compared to control. We found relatively increased expression of TGFB1 mRNA in the stapes tissues of cases compared to controls (p = 0.0057). In conclusion, this study identified a risk variant c.-509C > T and a risk haplotype G-T-T-G in the TGFB1 gene that contribute toward the susceptibility to OTSC.
Collapse
|
14
|
Ealy M, Smith RJ. The Genetics of otosclerosis. Hear Res 2010; 266:70-4. [DOI: 10.1016/j.heares.2009.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 11/15/2022]
|
15
|
Etiopathogenesis of otosclerosis. Eur Arch Otorhinolaryngol 2010; 267:1337-49. [DOI: 10.1007/s00405-010-1292-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
|
16
|
Abstract
OBJECTIVES Otosclerosis is a major cause of acquired hearing loss in adult life affecting exclusively the human temporal bone. Until recently, the etiopathogenesis of otosclerosis was still a matter of debate. Genetic research, however, has evolved enormously the last years and unveiled important clues regarding the cause of otosclerosis. The objective of this article is to review the genetics of otosclerosis with special attention for the links to the bone homeostasis of the otic capsule. DATA SOURCES A detailed literature study was performed focusing on the recent genetic findings in otosclerosis and the special bone turnover of the otic capsule. A PubMed search and own research data were used to bring the relevant information for this review together. CONCLUSION Unlike all other bones in the human skeleton, the otic capsule undergoes very little remodeling after development, possibly due to local inner ear factors. Otosclerosis is a process of pathologic increased bone turnover in the otic capsule, which in most cases leads to stapes fixation, resulting in a conductive hearing loss. Although environmental factors such as estrogens, fluoride, and viral infection have been implicated, it is clear that genetic factors play a significant role in the manifestation of otosclerosis. From a genetic viewpoint, otosclerosis is considered to be a complex disease with rare autosomal dominant forms caused by a single gene. Already, 7 monogenic loci have been published, but none of the genes involved have been identified. For the complex form of otosclerosis, caused by an interaction between genetic and environmental factors, the first susceptibility genes were identified by case-control association studies. All 3 replicated genes, TGFB1, BMP2, and BMP4, are a part of the transforming growth factor-beta1 pathway. Data from both genetic association studies and gene expression analysis of otosclerotic bone showed that the TGF-beta1 pathway is most likely an important factor in the pathogenesis of otosclerosis.
Collapse
|