1
|
Tekin MS, Ayçiçek A, Bucak A, Ulu Ş, Okur E. The Effect of Thymoquinone on Acoustic Trauma-Induced Hearing Loss in Rats. Cureus 2024; 16:e72181. [PMID: 39445041 PMCID: PMC11497200 DOI: 10.7759/cureus.72181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background The aim of this study was to investigate the protective effect of thymoquinone, an antioxidant, on hearing loss induced by acoustic trauma in rats. Material and methods This study included 32 Wistar Albino rats divided into four groups: control, acoustic trauma, thymoquinone + acoustic trauma, and thymoquinone only, with eight rats per group. The control group received 0.5 mL of corn oil intraperitoneally for 10 days. The acoustic trauma group was exposed to 100 dB white noise at 4 kHz for 16 hours. The thymoquinone + acoustic trauma group received thymoquinone (10 mg/kg) intraperitoneally for two days before acoustic trauma and eight days after acoustic trauma. The thymoquinone only group received thymoquinone (10 mg/kg) for 10 days. Distortion product otoacoustic emissions (DPOAEs) were measured before and after treatments on days 1, 4, and 10. Results In the control group, DPOAE measurements showed no significant change over the study period. The acoustic trauma group exhibited a significant decrease in DPOAE on the first day after trauma, followed by some recovery. The thymoquinone + acoustic trauma group showed no significant decrease in DPOAE on the first day post-trauma, suggesting a protective effect. The thymoquinone only group also indicated no significant change in DPOAE measurements, suggesting that thymoquinone alone did not affect hearing function. Conclusion Thymoquinone demonstrated a protective effect against acoustic trauma-induced hearing loss in rats, as evidenced by stable DPOAE measurements post-trauma. These findings suggest that thymoquinone may help preserve hearing function by reducing oxidative stress in the cochlea. Further studies are needed to confirm these results in humans and optimize dosage and treatment protocols.
Collapse
Affiliation(s)
- Mustafa Said Tekin
- Otolaryngology - Head and Neck Surgery, Medipol University Medipol Mega Hospital, Istanbul, TUR
| | - Abdullah Ayçiçek
- Otolaryngology - Head and Neck Surgery, Afyonkarahisar Health Sciences University Hospital, Afyonkarahisar, TUR
| | - Abdulkadir Bucak
- Otolaryngology - Head and Neck Surgery, Afyonkarahisar Health Sciences University Hospital, Afyonkarahisar, TUR
| | - Şahin Ulu
- Otolaryngology - Head and Neck Surgery, Afyonkarahisar Health Sciences University Hospital, Afyonkarahisar, TUR
| | - Erdoğan Okur
- Otolaryngology - Head and Neck Surgery, Suleyman Demirel University, Isparta, TUR
| |
Collapse
|
2
|
Fan B, Wang G, Wu W. Comparative analysis of hearing loss caused by steady-state noise and impulse noise. Work 2024; 79:653-660. [PMID: 38848149 DOI: 10.3233/wor-230066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Varied noise environments, such as impulse noise and steady-state noise, may induce distinct patterns of hearing impairment among personnel exposed to prolonged noise. However, comparative studies on these effects remain limited. OBJECTIVE This study aims to delineate the different characteristics of hearing loss in workers exposed to steady-state noise and impulse noise. METHODS As of December 2020, 96 workers exposed to steady-state noise and 177 workers exposed to impulse noise were assessed. Hearing loss across various frequencies was measured using pure tone audiometry and distortion product otoacoustic emission (DPOAE) audiometry. RESULTS Both groups of workers exposed to steady-state noise and impulse noise exhibited high frequencies hearing loss. The steady-state noise group displayed significantly greater hearing loss at lower frequencies in the early stages, spanning 1- 5 years of work (P < 0.05). Among individuals exposed to impulse noise for extended periods (over 10 years), the observed hearing loss surpassed that of the steady-state noise group, displaying a statistically significant difference (P < 0.05). CONCLUSION Hearing loss resulting from both steady-state noise and impulse noise predominantly occurs at high frequencies. Early exposure to steady-state noise induces more pronounced hearing loss at speech frequencies compared to impulse noise.
Collapse
Affiliation(s)
- Boya Fan
- Department of Otorhinolaryngology Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Gang Wang
- Department of Otorhinolaryngology Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Wei Wu
- Department of Otorhinolaryngology Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
3
|
Liu S, Zou H, Lei S, Xin J, Qian P, Liu Y, Chen Y, Yu K, Zhang M. The role of kurtosis and kurtosis-adjusted energy metric in occupational noise-induced hearing loss among metal manufacturing workers. Front Public Health 2023; 11:1159348. [PMID: 37457253 PMCID: PMC10344449 DOI: 10.3389/fpubh.2023.1159348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Background Noise energy has been well-established to increase the risk of occupational noise-induced hearing loss (NIHL). However, the role of noise temporal structure (expressed by kurtosis) or its combination with energy metrics (e.g., kurtosis-adjusted cumulative noise exposure, adj-CNE) in occupational NIHL was still unclear. Methods A cross-sectional survey of 867 Chinese workers, including 678 metal manufacturing workers and 189 workers exposed to Gaussian noise, was conducted. Noise energy metrics, including LAeq,8h and CNE, kurtosis (β), and adj-CNE were used to quantify noise exposure levels. Noise-induced permanent threshold shift at frequencies 3, 4, and 6 kHz (NIPTS346) and the prevalence of high-frequency NIHL (HFNIHL%) were calculated for each participant. The dose-response relationship between kurtosis or adj-CNE and occupational NIHL was observed. Results Among 867 workers, different types of work had specific and independent noise energy and kurtosis values (p > 0.05). HFNIHL% increased with an increase in exposure duration (ED), LAeq,8h, CNE, or kurtosis (p < 0.01), and there were strong linear relationships between HFNIHL% and ED (coefficient of determination [R2] = 0.963), CNE (R2 = 0.976), or kurtosis (R2 = 0.938, when CNE < 100 dB(A)∙year). The "V" shape notching extent in NIPTS became deeper with increasing kurtosis when CNE < 100 dB(A)∙year and reached the notching bottom at the frequency of 4 or 6 kHz. The workers exposed to complex noise (β ≥ 10) had a higher risk of NIHL than those exposed to Gaussian noise (β < 10) at the frequencies of 3, 4, 6, and 8 kHz (OR > 2, p < 0.01). Moreover, HFNIHL% increased with adj-CNE (p < 0.001). There were strong linear relationships between NIHL and adj-CNE or CNE when β ≥ 10 (R2adj-CNE > R2CNE). After CNE was adjusted by kurtosis, average differences in NIPTS346 or HFNIHL% between the complex and Gaussian noise group were significantly reduced (p < 0.05). Conclusion Kurtosis was a key factor influencing occupational NIHL among metal manufacturing workers, and its combination with energy metrics could assess the risk of NIHL more effectively than CNE alone.
Collapse
Affiliation(s)
- Shuangyan Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Zou
- Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Song Lei
- Ningbo Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Jiarui Xin
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peiyi Qian
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yun Liu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yingqi Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kuai Yu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meibian Zhang
- Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Downregulation of GJB2 and SLC26A4 genes induced by noise exposure is associated with cochlear damage. Mol Biol Rep 2022; 49:7219-7229. [PMID: 35809183 DOI: 10.1007/s11033-022-07291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Noise-induced hearing loss (NIHL) is one the major causes of acquired hearing loss in developed countries. Noise can change the pattern of gene expression, inducing sensorineural hearing impairment. There is no investigation on the effects of noise frequency on the expression of GJB2 and SLC26A4 genes involved in congenital hearing impairment in cochlear tissue. Here we investigated the impacts of white and purple noise on gene expression and pathologic changes of cochlear tissue. METHODS In this study, 32 adult male Westar rats were randomly divided into experimental groups: WN, animals exposed to white noise with a frequency range of 100-20000 Hz; PN, animals exposed to purple noise with a frequency range of 4-20 kHz, and control group, without noise. The experimental groups were exposed to a 118-120 dB sound pressure level for 8 h per 3 days and 6 days. 1 h and 1 week after termination of noise exposure, cochlear tissue was prepared for pathology and gene expression analysis. RESULTS Both white and purple noises caused permanent damage to the cortical, estrosilica systems of hair cells and ganglion of the hearing nerve. GJB2 and SLC26A4 were downregulated in both groups exposed with white and purple noise by increasing the time of noise exposure. However, differences are notably more significant in purple noise, which is more intensified. Also, 1 weak post noise exposure, the downregulation is remarkably higher than 1 h. CONCLUSIONS Our findings suggest that downregulation of GJB2 and SLC26A4 genes are associated with pathological injury in response to noise exposure in cochlear tissue. It would be suggested the demand for assessment of RNA and protein expression of genes involved in noise-induced hearing loss and subsequently the practice of hearing protection programs.
Collapse
|
5
|
Zhang M, Qiu W, Xie H, Xu X, Shi Z, Gao X, Zhou L, Zou H, Hu W, Sun X. Applying Kurtosis as an Indirect Metric of Noise Temporal Structure in the Assessment of Hearing Loss Associated With Occupational Complex Noise Exposure. Ear Hear 2021; 42:1782-1796. [PMID: 34369415 PMCID: PMC8542071 DOI: 10.1097/aud.0000000000001068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The association of occupational noise-induced hearing loss (NIHL) with noise energy was well documented, but the relationship between occupational noise and noise temporal structure is rarely reported. The objective of this study was to investigate the principal characteristics of the relationship between occupational NIHL and the temporal structure of noise. METHODS Audiometric and shift-long noise exposure data were collected from 3102 Chinese manufacturing workers from six typical industries through a cross-sectional survey. In data analysis, A-weighted 8-h equivalent SPL (LAeq.8h), peak SPL, and cumulative noise exposure (CNE) were used as noise energy indicators, while kurtosis (β) was used as the indicator of noise temporal structure. Two NIHL were defined: (1) high-frequency noise-induced hearing loss (HFNIHL) and (2) noise-induced permanent threshold shift at test frequencies of 3, 4, and 6 kHz (noise-induced permanent threshold shift [NIPTS346]). The noise characteristics of different types of work and the relationship between these characteristics and the prevalence of NIHL were analyzed. RESULTS The noise waveform shape, with a specific noise kurtosis, was unique to each type of work. Approximately 27.92% of manufacturing workers suffered from HFNIHL, with a mean NIPTS346 of 24.16 ± 14.13 dB HL. The Spearman correlation analysis showed that the kurtosis value was significantly correlated with the difference of peak SPL minus its LAeq.8h across different types of work (p < 0.01). For a kurtosis-adjusted CNE, the linear regression equation between HFNIHL% and CNE for complex noise almost overlapped with Gaussian noise. Binary logistic regression analysis showed that LAeq.8h, kurtosis, and exposure duration were the key factors influencing HFNIHL% (p < 0.01). The notching extent in NIPTS at 4 kHz became deeper with the increase in LAeq.8h and kurtosis. HFNIHL% increased most rapidly during the first 10 years of exposure. HFNIHL% with β ≥ 10 was significantly higher than that with β < 10 (p < 0.05), and it increased with increasing kurtosis across different CNE or LAeq.8h levels. When LAeq.8h was 80 to 85 dB(A), the HFNIHL% at β ≥ 100 was significantly higher than that at 10 ≤ β < 100 or β < 10 (p < 0.05 and p < 0.01, respectively). CONCLUSIONS In the evaluation of hearing loss caused by complex noise, not only noise energy but also the temporal structure of noise must be considered. Kurtosis of noise is an indirect metric that is sensitive to the presence of impulsive components in complex noise exposure, and thus, it could be useful for quantifying the risk for NIHL. It is necessary to re-evaluate the safety of permissible exposure limit of 85 dB(A) as noise with a high kurtosis value can aggravate or accelerate early NIHL.
Collapse
Affiliation(s)
- Meibian Zhang
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Wei Qiu
- Auditory Research Laboratory, State University of New York at Plattsburgh, New York, USA
| | - Hongwei Xie
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M Health Science Center, Texas, USA
| | - Zhihao Shi
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiangjing Gao
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Lifang Zhou
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Hua Zou
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Weijiang Hu
- National Institute of Occupational Health and Poisoning Control, China Center for Disease Control and Prevention, Beijing, China
| | - Xin Sun
- National Institute of Occupational Health and Poisoning Control, China Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Jaimes C, Delgado J, Cunnane MB, Hedrick HL, Adzick NS, Gee MS, Victoria T. Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T. Pediatr Radiol 2019; 49:37-45. [PMID: 30298210 DOI: 10.1007/s00247-018-4261-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Fetal MRI at 3 T is associated with increased acoustic noise relative to 1.5 T. OBJECTIVE The goal of this study is to determine if there is an increased prevalence of congenital hearing loss in neonates who had a 3-T prenatal MR vs. those who had it at 1.5 T. MATERIALS AND METHODS We retrospectively identified all subjects who had 3-T fetal MRI between 2012 and 2016 and also underwent universal neonatal hearing screening within 60 days of birth. Fetuses with incomplete hearing screening, magnetic resonance imaging (MRI) studies at both field strengths or fetuses affected by conditions associated with hearing loss were excluded. A random group of controls scanned at 1.5 T was identified. Five subjects had repeat same-strength MRIs (one at 3 T and four at 1.5 T). The pass/fail rate of the transient otoacoustic emissions test and auditory brainstem response test were compared using the Fisher exact test. A logistic regression was performed to assess the effects of other known risk factors for congenital hearing loss. RESULTS Three hundred forty fetal MRI examinations were performed at 3 T, of which 62 met inclusion criteria. A control population of 1.5-T fetal MRI patients was created using the same exclusion criteria, with 62 patients randomly selected from the eligible population. The fail rates of transient otoacoustic emissions test for the 1.5-T and 3-T groups were 9.7% and 6.5%, respectively, and for the auditory brainstem response test were 3.2% and 1.6%, respectively. There was no significant difference in the fail rate of either test between groups (P=0.74 for transient otoacoustic emissions test, and P=0.8 for auditory brainstem response test). The median gestational age of the 3-T group was 30 weeks, 1 day, significantly higher (P<0.001) than the 1.5-T group (median gestational age: 20 weeks, 2 days). CONCLUSION Our findings suggest that the increase in noise associated with 3 T does not increase the rate of clinically detectable hearing abnormalities.
Collapse
Affiliation(s)
- Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Delgado
- Department of Radiology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Mary Beth Cunnane
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Holly L Hedrick
- Department of Surgery, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - N Scott Adzick
- Department of Surgery, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Teresa Victoria
- Department of Radiology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Neal C, Kennon-McGill S, Freemyer A, Shum A, Staecker H, Durham D. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss. Hear Res 2015; 328:120-32. [PMID: 26299845 PMCID: PMC4646081 DOI: 10.1016/j.heares.2015.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/26/2015] [Accepted: 08/17/2015] [Indexed: 11/12/2022]
Abstract
Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure.
Collapse
Affiliation(s)
- Christopher Neal
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Otolaryngology and Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Stefanie Kennon-McGill
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Otolaryngology and Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrea Freemyer
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Otolaryngology and Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Axel Shum
- Department of Otolaryngology and Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hinrich Staecker
- Department of Otolaryngology and Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dianne Durham
- Department of Otolaryngology and Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
8
|
Sanz L, Murillo-Cuesta S, Cobo P, Cediel-Algovia R, Contreras J, Rivera T, Varela-Nieto I, Avendaño C. Swept-sine noise-induced damage as a hearing loss model for preclinical assays. Front Aging Neurosci 2015; 7:7. [PMID: 25762930 PMCID: PMC4329813 DOI: 10.3389/fnagi.2015.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/19/2015] [Indexed: 11/27/2022] Open
Abstract
Mouse models are key tools for studying cochlear alterations in noise-induced hearing loss (NIHL) and for evaluating new therapies. Stimuli used to induce deafness in mice are usually white and octave band noises that include very low frequencies, considering the large mouse auditory range. We designed different sound stimuli, enriched in frequencies up to 20 kHz (“violet” noises) to examine their impact on hearing thresholds and cochlear cytoarchitecture after short exposure. In addition, we developed a cytocochleogram to quantitatively assess the ensuing structural degeneration and its functional correlation. Finally, we used this mouse model and cochleogram procedure to evaluate the potential therapeutic effect of transforming growth factor β1 (TGF-β1) inhibitors P17 and P144 on NIHL. CBA mice were exposed to violet swept-sine noise (VS) with different frequency ranges (2–20 or 9–13 kHz) and levels (105 or 120 dB SPL) for 30 min. Mice were evaluated by auditory brainstem response (ABR) and otoacoustic emission tests prior to and 2, 14 and 28 days after noise exposure. Cochlear pathology was assessed with gross histology; hair cell number was estimated by a stereological counting method. Our results indicate that functional and morphological changes induced by VS depend on the sound level and frequency composition. Partial hearing recovery followed the exposure to 105 dB SPL, whereas permanent cochlear damage resulted from the exposure to 120 dB SPL. Exposure to 9–13 kHz noise caused an auditory threshold shift (TS) in those frequencies that correlated with hair cell loss in the corresponding areas of the cochlea that were spotted on the cytocochleogram. In summary, we present mouse models of NIHL, which depending on the sound properties of the noise, cause different degrees of cochlear damage, and could therefore be used to study molecules which are potential players in hearing loss protection and repair.
Collapse
Affiliation(s)
- Lorena Sanz
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Príncipe de Asturias University Hospital, University of Alcalá, Alcalá de Henares Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Pedro Cobo
- Institute for Physical and Information Technologies (ITEFI), Spanish National Research Council (CSIC) Madrid, Spain
| | - Rafael Cediel-Algovia
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Veterinary Faculty, Complutense University of Madrid Madrid, Spain
| | - Julio Contreras
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Veterinary Faculty, Complutense University of Madrid Madrid, Spain
| | - Teresa Rivera
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Príncipe de Asturias University Hospital, University of Alcalá, Alcalá de Henares Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Carlos Avendaño
- Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain ; Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid Madrid, Spain
| |
Collapse
|
9
|
Jastreboff PJ, Jastreboff MM. Decreased sound tolerance: hyperacusis, misophonia, diplacousis, and polyacousis. HANDBOOK OF CLINICAL NEUROLOGY 2015; 129:375-87. [PMID: 25726280 DOI: 10.1016/b978-0-444-62630-1.00021-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Definitions, potential mechanisms, and treatments for decreased sound tolerance, hyperacusis, misophonia, and diplacousis are presented with an emphasis on the associated physiologic and neurophysiological processes and principles. A distinction is made between subjects who experience these conditions versus patients who suffer from them. The role of the limbic and autonomic nervous systems and other brain systems involved in cases of bothersome decreased sound tolerance is stressed. The neurophysiological model of tinnitus is outlined with respect to how it may contribute to our understanding of these phenomena and their treatment.
Collapse
Affiliation(s)
- Pawel J Jastreboff
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA.
| | | |
Collapse
|
10
|
Tyagi N. Response to a Letter to the Editor to ‘Folic acid improves inner ear vascularization in hyperhomocysteinemic mice’. Hear Res 2012. [DOI: 10.1016/j.heares.2012.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Zheng G, Hu BH. Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea. BMC Neurosci 2012; 13:71. [PMID: 22712683 PMCID: PMC3407512 DOI: 10.1186/1471-2202-13-71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022] Open
Abstract
Background Exposure to intense noise causes the excessive movement of the organ of Corti, stretching the organ and compromising sensory cell functions. We recently revealed changes in the transcriptional expression of multiple adhesion-related genes during the acute phases of cochlear damage, suggesting that the disruption of cell-cell junctions is an early event in the process of cochlear pathogenesis. However, the functional state of cell junctions in the sensory epithelium is not clear. Here, we employed graded dextran-FITC, a macromolecule tracer that is impermeable to the organ of Corti under physiological conditions, to evaluate the barrier function of cell junctions in normal and noise-traumatized cochlear sensory epithelia. Results Exposure to an impulse noise of 155 dB (peak sound pressure level) caused a site-specific disruption in the intercellular junctions within the sensory epithelium of the chinchilla cochlea. The most vulnerable sites were the junctions among the Hensen cells and between the Hensen and Deiters cells within the outer zone of the sensory epithelium. The junction clefts that formed in the reticular lamina were permeable to 40 and 500 but not 2,000 kDa dextran-FITC macromolecules. Moreover, this study showed that the interruption of junction integrity occurred in the reticular lamina and also in the basilar membrane, a site that had been considered to be resistant to acoustic injury. Finally, our study revealed a general spatial correlation between the site of sensory cell damage and the site of junction disruption. However, the two events lacked a strict one-to-one correlation, suggesting that the disruption of cell-cell junctions is a contributing, but not the sole, factor for initiating acute sensory cell death. Conclusions Impulse noise causes the functional disruption of intercellular junctions in the sensory epithelium of the chinchilla cochlea. This disruption occurs at an early phase of cochlear damage. Understanding the role of this disruption in cochlear pathogenesis will require future study.
Collapse
Affiliation(s)
- Guiliang Zheng
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, USA
| | | |
Collapse
|
12
|
|