1
|
Hearing in Indian peafowl (Pavo cristatus): sensitivity to infrasound. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:899-906. [PMID: 33025058 DOI: 10.1007/s00359-020-01446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
Despite the excitement that followed the report of infrasound sensitivity in pigeons 40 years ago, there has been limited followup, with only eleven species of birds having auditory thresholds at frequencies below 250 Hz. With such sparse data on low-frequency hearing, there is little understanding of why some birds hear very low frequencies while others do not. To begin to expand the phylogenetic and ecological sample of low-frequency hearing in birds, we determined the behavioral audiogram of the Indian peafowl, Pavo cristatus. Peafowl are thought to use low frequencies generated by the males' tail feathers and wing flutters during courtship displays, and their crest feathers are reported to resonate at infrasound frequencies. The peafowl were able to respond to frequencies as low as 4 Hz, and their hearing range at 60 dB SPL extended from 29 Hz to 7.065 kHz (7.9 octaves). Removing the crest feathers reduced sensitivity at their resonant frequencies by as much as 7.5 dB, indicating a modest contribution to detectability in that range. However, perforation of the tympanic membranes severely reduced sensitivity to low frequencies, indicating that sensitivity to low frequencies is mediated primarily by the ears and cannot be attributed to some other sensory modality.
Collapse
|
2
|
Cunha F, Racicot K, Nahirney J, Heuston C, Wylie D, Iwaniuk A. Allometric Scaling Rules of the Cerebellum in Galliform Birds. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:78-92. [DOI: 10.1159/000509069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
Although the internal circuitry of the cerebellum is highly conserved across vertebrate species, the size and shape of the cerebellum varies considerably. Recent comparative studies have examined the allometric rules between cerebellar mass and number of neurons, but data are lacking on the numbers and sizes of Purkinje and granule cells or scaling of cerebellar foliation. Here, we investigate the allometric rules that govern variation in the volumes of the layers of the cerebellum, the numbers and sizes of Purkinje cells and granule cells and the degree of the cerebellar foliation across 7 species of galliform birds. We selected Galliformes because they vary greatly in body and brain sizes. Our results show that the molecular, granule and white matter layers all increase in volume at the same rate relative to total cerebellum volume. Both numbers and sizes of Purkinje cells increased with cerebellar volume, but numbers of Purkinje cells increased at a much faster rate than size. Granule cell numbers increased with cerebellar volume, but size did not. Sizes and numbers of Purkinje cells as well as numbers of granule cells were positively correlated with the degree of cerebellar foliation, but granule cell size decreased with higher degrees of foliation. The concerted changes among the volumes of cerebellar layers likely reflects the conserved neural circuitry of the cerebellum. Also, our data indicate that the scaling of cell sizes can vary markedly across neuronal populations, suggesting that evolutionary changes in cell sizes might be more complex than what is often assumed.
Collapse
|
3
|
Japanese quail (Coturnix japonica) audiogram from 16 Hz to 8 kHz. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:665-670. [DOI: 10.1007/s00359-020-01428-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022]
|
4
|
Déaux EC, O'Neil NP, Jensen AM, Charrier I, Iwaniuk AN. Courtship display speed varies daily and with body size in the Ruffed Grouse (
Bonasa umbellus
). Ethology 2020. [DOI: 10.1111/eth.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eloïse C. Déaux
- Department de Cognition Comparée Université de Neuchâtel Neuchâtel Switzerland
| | - Nicholas P. O'Neil
- Department of Neuroscience University of Lethbridge Lethbridge AB Canada
| | - Ashley M. Jensen
- Department of Biology University of Lethbridge Lethbridge AB Canada
| | - Isabelle Charrier
- Université Paris‐Saclay Université Paris‐Sud CNRS UMR 9197 Institut des Neurosciences Paris‐Saclay Orsay France
| | - Andrew N. Iwaniuk
- Department of Neuroscience University of Lethbridge Lethbridge AB Canada
| |
Collapse
|
5
|
Jensen AM, O'Neil NP, Iwaniuk AN, Burg TM. Landscape effects on the contemporary genetic structure of Ruffed Grouse ( Bonasa umbellus) populations. Ecol Evol 2019; 9:5572-5592. [PMID: 31160983 PMCID: PMC6540679 DOI: 10.1002/ece3.5112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 01/01/2023] Open
Abstract
The amount of dispersal that occurs among populations can be limited by landscape heterogeneity, which is often due to both natural processes and anthropogenic activity leading to habitat loss or fragmentation. Understanding how populations are structured and mapping existing dispersal corridors among populations is imperative to both determining contemporary forces mediating population connectivity, and informing proper management of species with fragmented populations. Furthermore, the contemporary processes mediating gene flow across heterogeneous landscapes on a large scale are understudied, particularly with respect to widespread species. This study focuses on a widespread game bird, the Ruffed Grouse (Bonasa umbellus), for which we analyzed samples from the western extent of the range. Using three types of genetic markers, we uncovered multiple factors acting in concert that are responsible for mediating contemporary population connectivity in this species. Multiple genetically distinct groups were detected; microsatellite markers revealed six groups, and a mitochondrial marker revealed four. Many populations of Ruffed Grouse are genetically isolated, likely by macrogeographic barriers. Furthermore, the addition of landscape genetic methods not only corroborated genetic structure results, but also uncovered compelling evidence that dispersal resistance created by areas of unsuitable habitat is the most important factor mediating population connectivity among the sampled populations. This research has important implications for both our study species and other inhabitants of the early successional forest habitat preferred by Ruffed Grouse. Moreover, it adds to a growing body of evidence that isolation by resistance is more prevalent in shaping population structure of widespread species than previously thought.
Collapse
Affiliation(s)
- Ashley M. Jensen
- Department of Biological SciencesUniversity of LethbridgeLethbridgeAlbertaCanada
| | - Nicholas P. O'Neil
- Canadian Centre for Behavioural NeuroscienceUniversity of LethbridgeLethbridgeAlbertaCanada
| | - Andrew N. Iwaniuk
- Canadian Centre for Behavioural NeuroscienceUniversity of LethbridgeLethbridgeAlbertaCanada
| | - Theresa M. Burg
- Department of Biological SciencesUniversity of LethbridgeLethbridgeAlbertaCanada
| |
Collapse
|
6
|
O'Neil NP, Charrier I, Iwaniuk AN. Behavioural responses of male ruffed grouse (Bonasa umbellus, L.) to playbacks of drumming displays. Ethology 2018. [DOI: 10.1111/eth.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicholas P. O'Neil
- Department of Neuroscience; University of Lethbridge; Lethbridge AB Canada
| | - Isabelle Charrier
- Institut des Neurosciences Paris-Saclay; Université Paris-Saclay; Université Paris-Sud; CNRS; UMR 9197; Orsay France
| | - Andrew N. Iwaniuk
- Department of Neuroscience; University of Lethbridge; Lethbridge AB Canada
| |
Collapse
|
7
|
Audiogram of the mallard duck (Anas platyrhynchos) from 16 Hz to 9 kHz. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:929-934. [DOI: 10.1007/s00359-017-1204-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/23/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
8
|
Dakin R, McCrossan O, Hare JF, Montgomerie R, Amador Kane S. Biomechanics of the Peacock's Display: How Feather Structure and Resonance Influence Multimodal Signaling. PLoS One 2016; 11:e0152759. [PMID: 27119380 PMCID: PMC4847759 DOI: 10.1371/journal.pone.0152759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/19/2016] [Indexed: 11/19/2022] Open
Abstract
Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal "train-rattling" display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock's visual display by allowing the colorful iridescent eyespots-which strongly influence female mate choice-to remain nearly stationary against a dynamic iridescent background.
Collapse
Affiliation(s)
- Roslyn Dakin
- Department of Zoology, University of British Columbia, Vancouver, Canada
- * E-mail: (SAK); (RD)
| | - Owen McCrossan
- Drexel University, Philadelphia, PA, United States of America
| | - James F. Hare
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | | | - Suzanne Amador Kane
- Physics Department, Haverford College, Haverford, PA, United States of America
- * E-mail: (SAK); (RD)
| |
Collapse
|
9
|
Infrasonic and Seismic Communication in the Vertebrates with Special Emphasis on the Afrotheria: An Update and Future Directions. VERTEBRATE SOUND PRODUCTION AND ACOUSTIC COMMUNICATION 2016. [DOI: 10.1007/978-3-319-27721-9_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Crowell SE, Wells-Berlin AM, Carr CE, Olsen GH, Therrien RE, Yannuzzi SE, Ketten DR. A comparison of auditory brainstem responses across diving bird species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:803-15. [PMID: 26156644 DOI: 10.1007/s00359-015-1024-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676-680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.
Collapse
Affiliation(s)
- Sara E Crowell
- US Geological Survey Patuxent Wildlife Research Center, 12100 Beech Forest Rd., Laurel, MD, 20708, USA,
| | | | | | | | | | | | | |
Collapse
|
11
|
A unique cellular scaling rule in the avian auditory system. Brain Struct Funct 2015; 221:2675-93. [DOI: 10.1007/s00429-015-1064-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
|
12
|
|
13
|
Karim MR, Atoji Y. Distribution of Vesicular Glutamate Transporter 2 and Ionotropic Glutamate Receptors in the Auditory Ganglion and Cochlear Nuclei of Pigeons (Columba livia). Anat Histol Embryol 2015; 45:73-80. [PMID: 25639143 DOI: 10.1111/ahe.12173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/11/2015] [Indexed: 10/24/2022]
Abstract
Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense-to-moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds.
Collapse
Affiliation(s)
- M R Karim
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.,Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Y Atoji
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
14
|
Audiogram of the chicken (Gallus gallus domesticus) from 2 Hz to 9 kHz. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:863-70. [PMID: 25092127 DOI: 10.1007/s00359-014-0929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 10/24/2022]
Abstract
The pure-tone thresholds of four domestic female chickens were determined from 2 Hz to 9 kHz using the method of conditioned suppression/avoidance. At a level of 60 dB sound pressure level (re 20 μN/m(2)), their hearing range extends from 9.1 Hz to 7.2 kHz, with a best sensitivity of 2.6 dB at 2 kHz. Chickens have better sensitivity than humans for frequencies below 64 Hz; indeed, their sensitivity to infrasound exceeds that of the homing pigeon. However, when threshold testing moved to the lower frequencies, the animals required additional training before their final thresholds were obtained, suggesting that they may perceive frequencies below 64 Hz differently than higher frequencies.
Collapse
|