1
|
Intra-individual variation in the songs of humpback whales suggests they are sonically searching for conspecifics. Learn Behav 2022; 50:456-481. [PMID: 34791610 DOI: 10.3758/s13420-021-00495-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
Observations of animals' vocal actions can provide important clues about how they communicate and about how they perceive and react to changing situations. Here, analyses of consecutive songs produced by singing humpback whales recorded off the coast of Hawaii revealed that singers constantly vary the acoustic qualities of their songs within prolonged song sessions. Unlike the progressive changes in song structure that singing humpback whales make across months and years, intra-individual acoustic variations within song sessions appear to be largely stochastic. Additionally, four sequentially produced song components (or "themes") were each found to vary in unique ways. The most extensively used theme was highly variable in overall duration within and across song sessions, but varied relatively little in frequency content. In contrast, the remaining themes varied greatly in frequency content, but showed less variation in duration. Analyses of variations in the amount of time singers spent producing the four themes suggest that the mechanisms that determine when singers transition between themes may be comparable to those that control when terrestrial animals move their eyes to fixate on different positions as they examine visual scenes. The dynamic changes that individual whales make to songs within song sessions are counterproductive if songs serve mainly to provide conspecifics with indications of a singer's fitness. Instead, within-session changes to the acoustic features of songs may serve to enhance a singer's capacity to echoically detect, localize, and track conspecifics from long distances.
Collapse
|
2
|
Mercado E, Perazio CE. All units are equal in humpback whale songs, but some are more equal than others. Anim Cogn 2021; 25:149-177. [PMID: 34363127 DOI: 10.1007/s10071-021-01539-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Flexible production and perception of vocalizations is linked to an impressive array of cognitive capacities including language acquisition by humans, song learning by birds, biosonar in bats, and vocal imitation by cetaceans. Here, we characterize a portion of the repertoire of one of the most impressive vocalizers in nature: the humpback whale. Qualitative and quantitative analyses of sounds (units) produced by humpback whales revealed that singers gradually morphed streams of units along multiple acoustic dimensions within songs, maintaining the continuity of spectral content across subjectively dissimilar unit "types." Singers consistently produced some unit forms more frequently and intensely than others, suggesting that units are functionally heterogeneous. The precision with which singing humpback whales continuously adjusted the acoustic characteristics of units shows that they possess exquisite vocal control mechanisms and vocal flexibility beyond what is seen in most animals other than humans. The gradual morphing of units within songs that we observed is inconsistent with past claims that humpback whales construct songs from a fixed repertoire of discrete unit types. These findings challenge the results of past studies based on fixed-unit classification methods and argue for the development of new metrics for characterizing the graded structure of units. The specific vocal variations that singers produced suggest that humpback whale songs are unlikely to provide detailed information about a singer's reproductive fitness, but can reveal the precise locations and movements of singers from long distances and may enhance the effectiveness of units as sonar signals.
Collapse
Affiliation(s)
- Eduardo Mercado
- Department of Psychology, University at Buffalo, The State University of New York, Park Hall, Buffalo, NY, 14260, USA.
| | - Christina E Perazio
- Department of Psychology, University at Buffalo, The State University of New York, Park Hall, Buffalo, NY, 14260, USA.,School of Social and Behavioral Sciences, University of New England, Biddeford, ME, USA
| |
Collapse
|
3
|
Mercado E. Spectral interleaving by singing humpback whales: Signs of sonar. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:800. [PMID: 33639807 DOI: 10.1121/10.0003443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The duplex sonar model of humpback whale song proposes that broadband units within songs function differently from narrowband units. Specifically, this model suggests that singing humpback whales interleave constant frequency (CF) units, which can generate prolonged reverberation focused at specific frequencies, with less reverberant broadband units that minimally overlap with the focal frequencies of preceding and following CF units (referred to as spectral interleaving) to increase the efficacy of song as a sonar source. Here, it is shown that singers recorded off the coast of Hawaii in 2015 devoted most of their time singing to spectrally interleaving broadband elements of units around quasi-CF components that consistently generated persistent reverberant tails. Singers maintained reverberant CF streams in specific frequency bands when units contained broadband elements and when singers switched from producing pairs of alternating reverberant units to producing a single reverberant unit. Additionally, singers showed the ability to flexibly control where acoustic energy was concentrated within broadband components in ways that minimized spectral overlap with the focal frequencies of reverberant tails. The consistency and precision with which singing humpback whales interleaved broadband and reverberant CF elements of units confirm two novel predictions of the duplex sonar model.
Collapse
Affiliation(s)
- Eduardo Mercado
- Department of Psychology, University at Buffalo, SUNY, Park Hall, Buffalo, New York 14260, USA
| |
Collapse
|
4
|
Tsur I, Shaviv N, Bronstein I, Elmakis D, Knafo O, Werner YL. Topography of vibration frequency responses on the bony tympano-periotic complex of the pilot whale Globicephala macrorhynchus. Hear Res 2019; 384:107810. [PMID: 31726328 DOI: 10.1016/j.heares.2019.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
In modern Cetacea, the ear bone complex comprises the tympanic and periotic bones forming the tympano-periotic complex (TPC), differing from temporal bone complexes of other mammals in form, construction, position, and possibly function. To elucidate its functioning in sound transmission, we studied the vibration response of 32 pairs of formaldehyde-glutaraldehyde-fixed TPCs of Globicephala macrorhynchus, the short-finned pilot whale (legally obtained in Taiji, Japan). A piezoelectric-crystal-based vibrator was surgically attached to a location on the cochlea near the exit of the acoustic nerve. The crystal delivered vibrational pulses through continuous sweeps from 5 to 50 kHz. The vibration response was measured as a function of frequency by Laser Doppler Vibrometry at five points on the TPC. The aim of the experiment was to clarify how the vibration amplitudes produced by different frequencies are distributed on the TPC. At the lowest frequencies (<12 kHz), no clear differential pattern emerged. At higher frequencies the anterolateral lip of the TP responded most sensitively with the highest displacement amplitudes, and response amplitudes decreased in orderly fashion towards the posterior part of the TPC. We propose that this works as a lever: high-frequency sounds are most sensitively received and cause the largest vibration amplitudes at the anterior part of the TP, driving movements with lower amplitude but greater force near the posteriorly located contact to the ossicular chain, which transmits the movements into the inner ear. Although force (pressure) amplification is not needed for impedance matching in water, it may be useful for driving the stiffly connected ossicles at the high frequencies used in echolocation.
Collapse
Affiliation(s)
- Itamar Tsur
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Nir Shaviv
- Racah Institute of Physics The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Israel Bronstein
- Department of Mechanical Engineering, Ben Gurion University, Beer Sheva, Israel
| | - David Elmakis
- Department of Mechanical Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Oshri Knafo
- Department of Mechanical Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Yehudah L Werner
- Department of Ecology, Evolution and Behaviour, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Museum für Tierkunde, Senckenberg Dresden, Königsbrücker Landstrasse 159, D-01109 Dresden, Germany
| |
Collapse
|
5
|
Abstract
Why do humpback whales sing? This paper considers the hypothesis that humpback whales may use song for long range sonar. Given the vocal and social behavior of humpback whales, in several cases it is not apparent how they monitor the movements of distant whales or prey concentrations. Unless distant animals produce sounds, humpback whales are unlikely to be aware of their presence or actions. Some field observations are strongly suggestive of the use of song as sonar. Humpback whales sometimes stop singing and then rapidly approach distant whales in cases where sound production by those whales is not apparent, and singers sometimes alternately sing and swim while attempting to intercept another whale that is swimming evasively. In the evolutionary development of modern cetaceans, perceptual mechanisms have shifted from reliance on visual scanning to the active generation and monitoring of echoes. It is hypothesized that as the size and distance of relevant events increased, humpback whales developed adaptive specializations for long-distance echolocation. Differences between use of songs by humpback whales and use of sonar by other echolocating species are discussed, as are similarities between bat echolocation and singing by humpback whales. Singing humpback whales are known to emit sounds intense enough to generate echoes at long ranges, and to flexibly control the timing and qualities of produced sounds. The major problem for the hypothesis is the lack of recordings of echoes from other whales arriving at singers immediately before they initiate actions related to those whales. An earlier model of echoic processing by singing humpback whales is here revised to incorporate recent discoveries. According to the revised model, both direct echoes from targets and modulations in song-generated reverberation can provide singers with information that can help them make decisions about future actions related to mating, traveling, and foraging. The model identifies acoustic and structural features produced by singing humpback whales that may facilitate a singer's ability to interpret changes in echoic scenes and suggests that interactive signal coordination by singing whales may help them to avoid mutual interference. Specific, testable predictions of the model are presented.
Collapse
Affiliation(s)
- Eduardo Mercado III
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Evolution, Ecology, and Behavior Program, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
6
|
Mooney TA, Kaplan MB, Lammers MO. Singing whales generate high levels of particle motion: implications for acoustic communication and hearing? Biol Lett 2016; 12:rsbl.2016.0381. [PMID: 27807249 DOI: 10.1098/rsbl.2016.0381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/10/2016] [Indexed: 11/12/2022] Open
Abstract
Acoustic signals are fundamental to animal communication, and cetaceans are often considered bioacoustic specialists. Nearly all studies of their acoustic communication focus on sound pressure measurements, overlooking the particle motion components of their communication signals. Here we characterized the levels of acoustic particle velocity (and pressure) of song produced by humpback whales. We demonstrate that whales generate acoustic fields that include significant particle velocity components that are detectable over relatively long distances sufficient to play a role in acoustic communication. We show that these signals attenuate predictably in a manner similar to pressure and that direct particle velocity measurements can provide bearings to singing whales. Whales could potentially use such information to determine the distance of signalling animals. Additionally, the vibratory nature of particle velocity may stimulate bone conduction, a hearing modality found in other low-frequency specialized mammals, offering a parsimonious mechanism of acoustic energy transduction into the massive ossicles of whale ears. With substantial concerns regarding the effects of increasing anthropogenic ocean noise and major uncertainties surrounding mysticete hearing, these results highlight both an unexplored pathway that may be available for whale acoustic communication and the need to better understand the biological role of acoustic particle motion.
Collapse
Affiliation(s)
- T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, USA
| | - Maxwell B Kaplan
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, USA
| | - Marc O Lammers
- Hawaii Institute of Marine Biology, 46-007 Lilipuna Road, Kaneohe, HI, USA.,Oceanwide Science Institute, PO Box 61692, Honolulu, HI, USA
| |
Collapse
|