1
|
Lee TY, Weissenberger Y, King AJ, Dahmen JC. Midbrain encodes sound detection behavior without auditory cortex. eLife 2024; 12:RP89950. [PMID: 39688376 DOI: 10.7554/elife.89950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Hearing involves analyzing the physical attributes of sounds and integrating the results of this analysis with other sensory, cognitive, and motor variables in order to guide adaptive behavior. The auditory cortex is considered crucial for the integration of acoustic and contextual information and is thought to share the resulting representations with subcortical auditory structures via its vast descending projections. By imaging cellular activity in the corticorecipient shell of the inferior colliculus of mice engaged in a sound detection task, we show that the majority of neurons encode information beyond the physical attributes of the stimulus and that the animals' behavior can be decoded from the activity of those neurons with a high degree of accuracy. Surprisingly, this was also the case in mice in which auditory cortical input to the midbrain had been removed by bilateral cortical lesions. This illustrates that subcortical auditory structures have access to a wealth of non-acoustic information and can, independently of the auditory cortex, carry much richer neural representations than previously thought.
Collapse
Affiliation(s)
- Tai-Ying Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Yves Weissenberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Rao RPN. A sensory-motor theory of the neocortex. Nat Neurosci 2024; 27:1221-1235. [PMID: 38937581 DOI: 10.1038/s41593-024-01673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024]
Abstract
Recent neurophysiological and neuroanatomical studies suggest a close interaction between sensory and motor processes across the neocortex. Here, I propose that the neocortex implements active predictive coding (APC): each cortical area estimates both latent sensory states and actions (including potentially abstract actions internal to the cortex), and the cortex as a whole predicts the consequences of actions at multiple hierarchical levels. Feedback from higher areas modulates the dynamics of state and action networks in lower areas. I show how the same APC architecture can explain (1) how we recognize an object and its parts using eye movements, (2) why perception seems stable despite eye movements, (3) how we learn compositional representations, for example, part-whole hierarchies, (4) how complex actions can be planned using simpler actions, and (5) how we form episodic memories of sensory-motor experiences and learn abstract concepts such as a family tree. I postulate a mapping of the APC model to the laminar architecture of the cortex and suggest possible roles for cortico-cortical and cortico-subcortical pathways.
Collapse
Affiliation(s)
- Rajesh P N Rao
- Center for Neurotechnology, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Cai R, Ling L, Ghimire M, Brownell KA, Caspary DM. Tinnitus-related increases in single-unit activity in awake rat auditory cortex correlate with tinnitus behavior. Hear Res 2024; 445:108993. [PMID: 38518392 DOI: 10.1016/j.heares.2024.108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Tinnitus is known to affect 10-15 % of the population, severely impacting 1-2 % of those afflicted. Canonically, tinnitus is generally a consequence of peripheral auditory damage resulting in maladaptive plastic changes in excitatory/inhibitory homeostasis at multiple levels of the central auditory pathway as well as changes in diverse nonauditory structures. Animal studies of primary auditory cortex (A1) generally find tinnitus-related changes in excitability across A1 layers and differences between inhibitory neuronal subtypes. Changes due to sound-exposure include changes in spontaneous activity, cross-columnar synchrony, bursting and tonotopic organization. Few studies in A1 directly correlate tinnitus-related changes in neural activity to an individual animal's behavioral evidence of tinnitus. The present study used an established condition-suppression sound-exposure model of chronic tinnitus and recorded spontaneous and driven single-unit responses from A1 layers 5 and 6 of awake Long-Evans rats. A1 units recorded from animals with behavioral evidence of tinnitus showed significant increases in spontaneous and sound-evoked activity which directly correlated to the animal's tinnitus score. Significant increases in the number of bursting units, the number of bursts/minute and burst duration were seen for A1 units recorded from animals with behavioral evidence of tinnitus. The present A1 findings support prior unit recording studies in auditory thalamus and recent in vitro findings in this same animal model. The present findings are consistent with sensory cortical studies showing tinnitus- and neuropathic pain-related down-regulation of inhibition and increased excitation based on plastic neurotransmitter and potassium channel changes. Reducing A1 deep-layer tinnitus-related hyperactivity is a potential target for tinnitus pharmacotherapy.
Collapse
Affiliation(s)
- Rui Cai
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, United States
| | - Lynne Ling
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, United States
| | - Madan Ghimire
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, United States
| | - Kevin A Brownell
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, United States
| | - Donald M Caspary
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, United States.
| |
Collapse
|
4
|
Gómez-Martínez M, Rincón H, Gómez-Álvarez M, Gómez-Nieto R, Saldaña E. The nuclei of the lateral lemniscus: unexpected players in the descending auditory pathway. Front Neuroanat 2023; 17:1242245. [PMID: 37621862 PMCID: PMC10445163 DOI: 10.3389/fnana.2023.1242245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction In the mammalian auditory pathway, the nuclei of the lateral lemniscus (NLL) are thought to be exclusively involved in the bottom-up transmission of auditory information. However, our repeated observation of numerous NLL neurons labeled after injection of retrograde tracers into the superior olivary complex (SOC) led us to systematically investigate with retrograde tracers the descending projections from the NLL to the SOC of the rat. Methods We performed large injections of FluoroGold into the SOC to determine NLL contributions to descending projections, and focal injections of biotinylated dextran amine (BDA) to pinpoint the specific nuclei of the SOC innervated by each NLL. Results The SOC is innervated by thousands of neurons distributed across four nuclei or regions associated with the lateral lemniscus: the ipsilateral ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL); the medial paralemniscal region (PL) of both sides; and the ipsilateral semilunar nucleus (SLN), a previously unrecognized nucleus that wraps around the INLL dorsally, medially, and caudally and consists of small, flat neurons. In some experiments, at least 30% of neurons in the VNLL and INLL were retrogradely labeled. All nuclei of the SOC, except the medial and lateral superior olives, are innervated by abundant lemniscal neurons, and each SOC nucleus receives a unique combination of lemniscal inputs. The primary target of the projections from the VNLL is the ventral nucleus of the trapezoid body (VNTB), followed by the superior paraolivary nucleus (SPON), and the medial nucleus of the trapezoid body (MNTB). The INLL selectively innervates the VNTB. The PL innervates dorsal periolivary regions bilaterally. The SLN preferentially innervates the MNTB and may provide the first identified non-calyceal excitatory input to MNTB neurons. Discussion Our novel findings have strong implications for understanding acoustic information processing in the initial stages of the auditory pathway. Based on the proportion of lemniscal neurons involved in all the projections described, the NLL should be considered major players in the descending auditory pathway.
Collapse
Affiliation(s)
- Mario Gómez-Martínez
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Héctor Rincón
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Marcelo Gómez-Álvarez
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Enrique Saldaña
- Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
Oberle HM, Ford AN, Czarny JE, Rogalla MM, Apostolides PF. Recurrent Circuits Amplify Corticofugal Signals and Drive Feedforward Inhibition in the Inferior Colliculus. J Neurosci 2023; 43:5642-5655. [PMID: 37308295 PMCID: PMC10401644 DOI: 10.1523/jneurosci.0626-23.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
The inferior colliculus (IC) is a midbrain hub critical for perceiving complex sounds, such as speech. In addition to processing ascending inputs from most auditory brainstem nuclei, the IC receives descending inputs from auditory cortex that control IC neuron feature selectivity, plasticity, and certain forms of perceptual learning. Although corticofugal synapses primarily release the excitatory transmitter glutamate, many physiology studies show that auditory cortical activity has a net inhibitory effect on IC neuron spiking. Perplexingly, anatomy studies imply that corticofugal axons primarily target glutamatergic IC neurons while only sparsely innervating IC GABA neurons. Corticofugal inhibition of the IC may thus occur largely independently of feedforward activation of local GABA neurons. We shed light on this paradox using in vitro electrophysiology in acute IC slices from fluorescent reporter mice of either sex. Using optogenetic stimulation of corticofugal axons, we find that excitation evoked with single light flashes is indeed stronger in presumptive glutamatergic neurons compared with GABAergic neurons. However, many IC GABA neurons fire tonically at rest, such that sparse and weak excitation suffices to significantly increase their spike rates. Furthermore, a subset of glutamatergic IC neurons fire spikes during repetitive corticofugal activity, leading to polysynaptic excitation in IC GABA neurons owing to a dense intracollicular connectivity. Consequently, recurrent excitation amplifies corticofugal activity, drives spikes in IC GABA neurons, and generates substantial local inhibition in the IC. Thus, descending signals engage intracollicular inhibitory circuits despite apparent constraints of monosynaptic connectivity between auditory cortex and IC GABA neurons.SIGNIFICANCE STATEMENT Descending "corticofugal" projections are ubiquitous across mammalian sensory systems, and enable the neocortex to control subcortical activity in a predictive or feedback manner. Although corticofugal neurons are glutamatergic, neocortical activity often inhibits subcortical neuron spiking. How does an excitatory pathway generate inhibition? Here we study the corticofugal pathway from auditory cortex to inferior colliculus (IC), a midbrain hub important for complex sound perception. Surprisingly, cortico-collicular transmission was stronger onto IC glutamatergic compared with GABAergic neurons. However, corticofugal activity triggered spikes in IC glutamate neurons with local axons, thereby generating strong polysynaptic excitation and feedforward spiking of GABAergic neurons. Our results thus reveal a novel mechanism that recruits local inhibition despite limited monosynaptic convergence onto inhibitory networks.
Collapse
Affiliation(s)
- Hannah M Oberle
- Neuroscience Graduate Program
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Alexander N Ford
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Jordyn E Czarny
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Meike M Rogalla
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Pierre F Apostolides
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Ryugo DK, Milinkeviciute G. Differential projections from the cochlear nucleus to the inferior colliculus in the mouse. Front Neural Circuits 2023; 17:1229746. [PMID: 37554670 PMCID: PMC10405501 DOI: 10.3389/fncir.2023.1229746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
The cochlear nucleus (CN) is often regarded as the gateway to the central auditory system because it initiates all ascending pathways. The CN consists of dorsal and ventral divisions (DCN and VCN, respectively), and whereas the DCN functions in the analysis of spectral cues, circuitry in VCN is part of the pathway focused on processing binaural information necessary for sound localization in horizontal plane. Both structures project to the inferior colliculus (IC), which serves as a hub for the auditory system because pathways ascending to the forebrain and descending from the cerebral cortex converge there to integrate auditory, motor, and other sensory information. DCN and VCN terminations in the IC are thought to overlap but given the differences in VCN and DCN architecture, neuronal properties, and functions in behavior, we aimed to investigate the pattern of CN connections in the IC in more detail. This study used electrophysiological recordings to establish the frequency sensitivity at the site of the anterograde dye injection for the VCN and DCN of the CBA/CaH mouse. We examined their contralateral projections that terminate in the IC. The VCN projections form a topographic sheet in the central nucleus (CNIC). The DCN projections form a tripartite set of laminar sheets; the lamina in the CNIC extends into the dorsal cortex (DC), whereas the sheets to the lateral cortex (LC) and ventrolateral cortex (VLC) are obliquely angled away. These fields in the IC are topographic with low frequencies situated dorsally and progressively higher frequencies lying more ventrally and/or laterally; the laminae nestle into the underlying higher frequency fields. The DCN projections are complementary to the somatosensory modules of layer II of the LC but both auditory and spinal trigeminal terminations converge in the VLC. While there remains much to be learned about these circuits, these new data on auditory circuits can be considered in the context of multimodal networks that facilitate auditory stream segregation, signal processing, and species survival.
Collapse
Affiliation(s)
- David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head and Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Giedre Milinkeviciute
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
7
|
Schmitt TTX, Andrea KMA, Wadle SL, Hirtz JJ. Distinct topographic organization and network activity patterns of corticocollicular neurons within layer 5 auditory cortex. Front Neural Circuits 2023; 17:1210057. [PMID: 37521334 PMCID: PMC10372447 DOI: 10.3389/fncir.2023.1210057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
The auditory cortex (AC) modulates the activity of upstream pathways in the auditory brainstem via descending (corticofugal) projections. This feedback system plays an important role in the plasticity of the auditory system by shaping response properties of neurons in many subcortical nuclei. The majority of layer (L) 5 corticofugal neurons project to the inferior colliculus (IC). This corticocollicular (CC) pathway is involved in processing of complex sounds, auditory-related learning, and defense behavior. Partly due to their location in deep cortical layers, CC neuron population activity patterns within neuronal AC ensembles remain poorly understood. We employed two-photon imaging to record the activity of hundreds of L5 neurons in anesthetized as well as awake animals. CC neurons are broader tuned than other L5 pyramidal neurons and display weaker topographic order in core AC subfields. Network activity analyses revealed stronger clusters of CC neurons compared to non-CC neurons, which respond more reliable and integrate information over larger distances. However, results obtained from secondary auditory cortex (A2) differed considerably. Here CC neurons displayed similar or higher topography, depending on the subset of neurons analyzed. Furthermore, specifically in A2, CC activity clusters formed in response to complex sounds were spatially more restricted compared to other L5 neurons. Our findings indicate distinct network mechanism of CC neurons in analyzing sound properties with pronounced subfield differences, demonstrating that the topography of sound-evoked responses within AC is neuron-type dependent.
Collapse
|
8
|
Ghimire M, Cai R, Ling L, Brownell KA, Hackett TA, Llano DA, Caspary DM. Increased pyramidal and VIP neuronal excitability in rat primary auditory cortex directly correlates with tinnitus behaviour. J Physiol 2023; 601:2493-2511. [PMID: 37119035 PMCID: PMC10330441 DOI: 10.1113/jp284675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Tinnitus affects roughly 15%-20% of the population while severely impacting 10% of those afflicted. Tinnitus pathology is multifactorial, generally initiated by damage to the auditory periphery, resulting in a cascade of maladaptive plastic changes at multiple levels of the central auditory neuraxis as well as limbic and non-auditory cortical centres. Using a well-established condition-suppression model of tinnitus, we measured tinnitus-related changes in the microcircuits of excitatory/inhibitory neurons onto layer 5 pyramidal neurons (PNs), as well as changes in the excitability of vasoactive intestinal peptide (VIP) neurons in primary auditory cortex (A1). Patch-clamp recordings from PNs in A1 slices showed tinnitus-related increases in spontaneous excitatory postsynaptic currents (sEPSCs) and decreases in spontaneous inhibitory postsynaptic currents (sIPSCs). Both measures could be correlated to the rat's behavioural evidence of tinnitus. Tinnitus-related changes in PN excitability were independent of changes in A1 excitatory or inhibitory cell numbers. VIP neurons, part of an A1 local circuit that can control the excitation of layer 5 PNs via disinhibitory mechanisms, showed significant tinnitus-related increases in excitability that directly correlated with the rat's behavioural tinnitus score. That PN and VIP changes directly correlated to tinnitus behaviour suggests an important role in A1 tinnitus pathology. Tinnitus-related A1 changes were similar to findings in studies of neuropathic pain in somatosensory cortex suggesting a common pathology of these troublesome perceptual impairments. Improved understanding between excitatory, inhibitory and disinhibitory sensory cortical circuits can serve as a model for testing therapeutic approaches to the treatment of tinnitus and chronic pain. KEY POINTS: We identified tinnitus-related changes in synaptic function of specific neuronal subtypes in a reliable animal model of tinnitus. The findings show direct and indirect tinnitus-related losses of normal inhibitory function at A1 layer 5 pyramidal cells, and increased VIP excitability. The findings are similar to what has been shown for neuropathic pain suggesting that restoring normal inhibitory function at synaptic inputs onto A1 pyramidal neurons (PNs) could conceptually reduce tinnitus discomfort.
Collapse
Affiliation(s)
- Madan Ghimire
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702
| | - Rui Cai
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702
| | - Lynne Ling
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702
| | - Kevin A. Brownell
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702
| | - Troy A. Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Daniel A. Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Donald M. Caspary
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702
| |
Collapse
|
9
|
Martínez-Vilavella G, Pujol J, Blanco-Hinojo L, Deus J, Rivas I, Persavento C, Sunyer J, Foraster M. The effects of exposure to road traffic noise at school on central auditory pathway functional connectivity. ENVIRONMENTAL RESEARCH 2023; 226:115574. [PMID: 36841520 DOI: 10.1016/j.envres.2023.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
As the world becomes more urbanized, more people become exposed to traffic and the risks associated with a higher exposure to road traffic noise increase. Excessive exposure to environmental noise could potentially interfere with functional maturation of the auditory brain in developing individuals. The aim of the present study was to assess the association between exposure to annual average road traffic noise (LAeq) in schools and functional connectivity of key elements of the central auditory pathway in schoolchildren. A total of 229 children from 34 representative schools in the city of Barcelona with ages between 8 and 12 years (49.2% girls) were evaluated. LAeq was obtained as the mean of 2-consecutive day measurements inside classrooms before lessons started following standard procedures to obtain an indicator of long-term road traffic noise levels. A region-of-interest functional connectivity Magnetic Resonance Imaging (MRI) approach was adopted. Functional connectivity maps were generated for the inferior colliculus, medial geniculate body of the thalamus and primary auditory cortex as key levels of the central auditory pathway. Road traffic noise in schools was significantly associated with stronger connectivity between the inferior colliculus and a bilateral thalamic region adjacent to the medial geniculate body, and with stronger connectivity between the medial geniculate body and a bilateral brainstem region adjacent to the inferior colliculus. Such a functional connectivity strengthening effect did not extend to the cerebral cortex. The anatomy of the association implicating subcortical relays suggests that prolonged road traffic noise exposure in developing individuals may accelerate maturation in the basic elements of the auditory pathway. Future research is warranted to establish whether such a faster maturation in early pathway levels may ultimately reduce the developing potential in the whole auditory system.
Collapse
Affiliation(s)
- Gerard Martínez-Vilavella
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain
| | - Cecilia Persavento
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Maria Foraster
- ISGlobal, Barcelona, Spain; Pompeu Fabra University (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBEREsp), Spain; PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain.
| |
Collapse
|
10
|
Descending projections to the auditory midbrain: evolutionary considerations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:131-143. [PMID: 36323876 PMCID: PMC9898193 DOI: 10.1007/s00359-022-01588-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The mammalian inferior colliculus (IC) is massively innervated by multiple descending projection systems. In addition to a large projection from the auditory cortex (AC) primarily targeting the non-lemniscal portions of the IC, there are less well-characterized projections from non-auditory regions of the cortex, amygdala, posterior thalamus and the brachium of the IC. By comparison, the frog auditory midbrain, known as the torus semicircularis, is a large auditory integration center that also receives descending input, but primarily from the posterior thalamus and without a projection from a putative cortical homolog: the dorsal pallium. Although descending projections have been implicated in many types of behaviors, a unified understanding of their function has not yet emerged. Here, we take a comparative approach to understanding the various top-down modulators of the IC to gain insights into their functions. One key question that we identify is whether thalamotectal projections in mammals and amphibians are homologous and whether they interact with evolutionarily more newly derived projections from the cerebral cortex. We also consider the behavioral significance of these descending pathways, given anurans' ability to navigate complex acoustic landscapes without the benefit of a corticocollicular projection. Finally, we suggest experimental approaches to answer these questions.
Collapse
|
11
|
Liu Y, Li Y, Peng Y, Yu H, Xiao Z. Bilateral Interactions in the Mouse Dorsal Inferior Colliculus Enhance the Ipsilateral Neuronal Responses and Binaural Hearing. Front Physiol 2022; 13:854077. [PMID: 35514328 PMCID: PMC9061965 DOI: 10.3389/fphys.2022.854077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The inferior colliculus (IC) is a critical centre for the binaural processing of auditory information. However, previous studies have mainly focused on the central nucleus of the inferior colliculus (ICC), and less is known about the dorsal nucleus of the inferior colliculus (ICD). Here, we first examined the characteristics of the neuronal responses in the mouse ICD and compared them with those in the inferior colliculus under binaural and monaural conditions using in vivo loose-patch recordings. ICD neurons exhibited stronger responses to ipsilateral sound stimulation and better binaural summation than those of ICC neurons, which indicated a role for the ICD in binaural hearing integration. According to the abundant interactions between bilateral ICDs detected using retrograde virus tracing, we further studied the effect of unilateral ICD silencing on the contralateral ICD. After lidocaine was applied, the responses of some ICD neurons (13/26), especially those to ipsilateral auditory stimuli, decreased. Using whole-cell recording and optogenetic methods, we investigated the underlying neuronal circuits and synaptic mechanisms of binaural auditory information processing in the ICD. The unilateral ICD provides both excitatory and inhibitory projections to the opposite ICD, and the advantaged excitatory inputs may be responsible for the enhanced ipsilateral responses and binaural summation of ICD neurons. Based on these results, the contralateral ICD might modulate the ipsilateral responses of the neurons and binaural hearing.
Collapse
Affiliation(s)
| | | | | | | | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Schelinski S, Tabas A, von Kriegstein K. Altered processing of communication signals in the subcortical auditory sensory pathway in autism. Hum Brain Mapp 2022; 43:1955-1972. [PMID: 35037743 PMCID: PMC8933247 DOI: 10.1002/hbm.25766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterised by social communication difficulties. These difficulties have been mainly explained by cognitive, motivational, and emotional alterations in ASD. The communication difficulties could, however, also be associated with altered sensory processing of communication signals. Here, we assessed the functional integrity of auditory sensory pathway nuclei in ASD in three independent functional magnetic resonance imaging experiments. We focused on two aspects of auditory communication that are impaired in ASD: voice identity perception, and recognising speech-in-noise. We found reduced processing in adults with ASD as compared to typically developed control groups (pairwise matched on sex, age, and full-scale IQ) in the central midbrain structure of the auditory pathway (inferior colliculus [IC]). The right IC responded less in the ASD as compared to the control group for voice identity, in contrast to speech recognition. The right IC also responded less in the ASD as compared to the control group when passively listening to vocal in contrast to non-vocal sounds. Within the control group, the left and right IC responded more when recognising speech-in-noise as compared to when recognising speech without additional noise. In the ASD group, this was only the case in the left, but not the right IC. The results show that communication signal processing in ASD is associated with reduced subcortical sensory functioning in the midbrain. The results highlight the importance of considering sensory processing alterations in explaining communication difficulties, which are at the core of ASD.
Collapse
Affiliation(s)
- Stefanie Schelinski
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Alejandro Tabas
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Katharina von Kriegstein
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
13
|
Weakley JM, Kavusak EK, Carroll JB, Gabriele ML. Segregation of Multimodal Inputs Into Discrete Midbrain Compartments During an Early Critical Period. Front Neural Circuits 2022; 16:882485. [PMID: 35463204 PMCID: PMC9021614 DOI: 10.3389/fncir.2022.882485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
The lateral cortex of the inferior colliculus (LCIC) is a multimodal subdivision of the midbrain inferior colliculus (IC) that plays a key role in sensory integration. The LCIC is compartmentally-organized, exhibiting a series of discontinuous patches or modules surrounded by an extramodular matrix. In adult mice, somatosensory afferents target LCIC modular zones, while auditory afferents terminate throughout the encompassing matrix. Recently, we defined an early LCIC critical period (birth: postnatal day 0 to P12) based upon the concurrent emergence of its neurochemical compartments (modules: glutamic acid decarboxylase, GAD+; matrix: calretinin, CR+), matching Eph-ephrin guidance patterns, and specificity of auditory inputs for its matrix. Currently lacking are analogous experiments that address somatosensory afferent shaping and the construction of discrete LCIC multisensory maps. Combining living slice tract-tracing and immunocytochemical approaches in a developmental series of GAD67-GFP knock-in mice, the present study characterizes: (1) the targeting of somatosensory terminals for emerging LCIC modular fields; and (2) the relative separation of somatosensory and auditory inputs over the course of its established critical period. Results indicate a similar time course and progression of LCIC projection shaping for both somatosensory (corticocollicular) and auditory (intracollicular) inputs. While somewhat sparse and intermingling at birth, modality-specific projection patterns soon emerge (P4–P8), coincident with peak guidance expression and the appearance of LCIC compartments. By P12, an adult-like arrangement is in place, with fully segregated multimodal afferent arrays. Quantitative measures confirm increasingly distinct input maps, exhibiting less projection overlap with age. Potential mechanisms whereby multisensory LCIC afferent systems recognize and interface with its emerging modular-matrix framework are discussed.
Collapse
|
14
|
Lesicko AMH, Angeloni CF, Blackwell JM, De Biasi M, Geffen MN. Cortico-fugal regulation of predictive coding. eLife 2022; 11:73289. [PMID: 35290181 PMCID: PMC8983050 DOI: 10.7554/elife.73289] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/12/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory systems must account for both contextual factors and prior experience to adaptively engage with the dynamic external environment. In the central auditory system, neurons modulate their responses to sounds based on statistical context. These response modulations can be understood through a hierarchical predictive coding lens: responses to repeated stimuli are progressively decreased, in a process known as repetition suppression, whereas unexpected stimuli produce a prediction error signal. Prediction error incrementally increases along the auditory hierarchy from the inferior colliculus (IC) to the auditory cortex (AC), suggesting that these regions may engage in hierarchical predictive coding. A potential substrate for top-down predictive cues is the massive set of descending projections from the auditory cortex to subcortical structures, although the role of this system in predictive processing has never been directly assessed. We tested the effect of optogenetic inactivation of the auditory cortico-collicular feedback in awake mice on responses of IC neurons to stimuli designed to test prediction error and repetition suppression. Inactivation of the cortico-collicular pathway led to a decrease in prediction error in IC. Repetition suppression was unaffected by cortico-collicular inactivation, suggesting that this metric may reflect fatigue of bottom-up sensory inputs rather than predictive processing. We also discovered populations of IC units that exhibit repetition enhancement, a sequential increase in firing with stimulus repetition. Cortico-collicular inactivation led to a decrease in repetition enhancement in the central nucleus of IC, suggesting that it is a top-down phenomenon. Negative prediction error, a stronger response to a tone in a predictable rather than unpredictable sequence, was suppressed in shell IC units during cortico-collicular inactivation. These changes in predictive coding metrics arose from bidirectional modulations in the response to the standard and deviant contexts, such that units in IC responded more similarly to each context in the absence of cortical input. We also investigated how these metrics compare between the anesthetized and awake states by recording from the same units under both conditions. We found that metrics of predictive coding and deviance detection differ depending on the anesthetic state of the animal, with negative prediction error emerging in the central IC and repetition enhancement and prediction error being more prevalent in the absence of anesthesia. Overall, our results demonstrate that the auditory cortex provides cues about the statistical context of sound to subcortical brain regions via direct feedback, regulating processing of both prediction and repetition.
Collapse
Affiliation(s)
- Alexandria M H Lesicko
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | | | - Jennifer M Blackwell
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, United States
| | - Mariella De Biasi
- Department of Psychiatry, University of Pennsylvania, Philadelphia, United States
| | - Maria N Geffen
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
15
|
Lesicko AM, Geffen MN. Diverse functions of the auditory cortico-collicular pathway. Hear Res 2022; 425:108488. [DOI: 10.1016/j.heares.2022.108488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/27/2022] [Accepted: 03/19/2022] [Indexed: 01/23/2023]
|
16
|
Oberle HM, Ford AN, Dileepkumar D, Czarny J, Apostolides PF. Synaptic mechanisms of top-down control in the non-lemniscal inferior colliculus. eLife 2022; 10:e72730. [PMID: 34989674 PMCID: PMC8735864 DOI: 10.7554/elife.72730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023] Open
Abstract
Corticofugal projections to evolutionarily ancient, subcortical structures are ubiquitous across mammalian sensory systems. These 'descending' pathways enable the neocortex to control ascending sensory representations in a predictive or feedback manner, but the underlying cellular mechanisms are poorly understood. Here, we combine optogenetic approaches with in vivo and in vitro patch-clamp electrophysiology to study the projection from mouse auditory cortex to the inferior colliculus (IC), a major descending auditory pathway that controls IC neuron feature selectivity, plasticity, and auditory perceptual learning. Although individual auditory cortico-collicular synapses were generally weak, IC neurons often integrated inputs from multiple corticofugal axons that generated reliable, tonic depolarizations even during prolonged presynaptic activity. Latency measurements in vivo showed that descending signals reach the IC within 30 ms of sound onset, which in IC neurons corresponded to the peak of synaptic depolarizations evoked by short sounds. Activating ascending and descending pathways at latencies expected in vivo caused a NMDA receptor-dependent, supralinear excitatory postsynaptic potential summation, indicating that descending signals can nonlinearly amplify IC neurons' moment-to-moment acoustic responses. Our results shed light upon the synaptic bases of descending sensory control and imply that heterosynaptic cooperativity contributes to the auditory cortico-collicular pathway's role in plasticity and perceptual learning.
Collapse
Affiliation(s)
- Hannah M Oberle
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Alexander N Ford
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Jordyn Czarny
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Pierre F Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
17
|
Vaithiyalingam Chandra Sekaran N, Deshpande MS, Ibrahim BA, Xiao G, Shinagawa Y, Llano DA. Patterns of Unilateral and Bilateral Projections From Layers 5 and 6 of the Auditory Cortex to the Inferior Colliculus in Mouse. Front Syst Neurosci 2021; 15:674098. [PMID: 34744644 PMCID: PMC8566350 DOI: 10.3389/fnsys.2021.674098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/19/2021] [Indexed: 12/04/2022] Open
Abstract
The auditory cortex sends massive projections to the inferior colliculus, but the organization of this pathway is not yet well understood. Previous work has shown that the corticocollicular projection emanates from both layers 5 and 6 of the auditory cortex and that neurons in these layers have different morphological and physiological properties. It is not yet known in the mouse if both layer 5 and layer 6 project bilaterally, nor is it known if the projection patterns differ based on projection location. Using targeted injections of Fluorogold into either the lateral cortex or dorsal cortex of the inferior colliculus, we quantified retrogradely labeled neurons in both the left and right lemniscal regions of the auditory cortex, as delineated using parvalbumin immunostaining. After dorsal cortex injections, we observed that approximately 18-20% of labeled cells were in layer 6 and that this proportion was similar bilaterally. After lateral cortex injections, only ipsilateral cells were observed in the auditory cortex, and they were found in both layer 5 and layer 6. The ratio of layer 5:layer 6 cells after lateral cortex injection was similar to that seen after dorsal cortex injection. Finally, injections of different tracers were made into the two inferior colliculi, and an average of 15-17% of cells in the auditory cortex were double-labeled, and these proportions were similar in layers 5 and 6. These data suggest that (1) only the dorsal cortex of the inferior colliculus receives bilateral projections from the auditory cortex, (2) both the dorsal and lateral cortex of the inferior colliculus receive similar layer 5 and layer 6 auditory cortical input, and (3) a subpopulation of individual neurons in both layers 5 and 6 branch to innervate both dorsal cortices of the inferior colliculus.
Collapse
Affiliation(s)
- Nathiya Vaithiyalingam Chandra Sekaran
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Meena S. Deshpande
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Baher A. Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Carle Illinois College of Medicine, Urbana, IL, United States
| |
Collapse
|
18
|
Clayton KK, Asokan MM, Watanabe Y, Hancock KE, Polley DB. Behavioral Approaches to Study Top-Down Influences on Active Listening. Front Neurosci 2021; 15:666627. [PMID: 34305516 PMCID: PMC8299106 DOI: 10.3389/fnins.2021.666627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
The massive network of descending corticofugal projections has been long-recognized by anatomists, but their functional contributions to sound processing and auditory-guided behaviors remain a mystery. Most efforts to characterize the auditory corticofugal system have been inductive; wherein function is inferred from a few studies employing a wide range of methods to manipulate varying limbs of the descending system in a variety of species and preparations. An alternative approach, which we focus on here, is to first establish auditory-guided behaviors that reflect the contribution of top-down influences on auditory perception. To this end, we postulate that auditory corticofugal systems may contribute to active listening behaviors in which the timing of bottom-up sound cues can be predicted from top-down signals arising from cross-modal cues, temporal integration, or self-initiated movements. Here, we describe a behavioral framework for investigating how auditory perceptual performance is enhanced when subjects can anticipate the timing of upcoming target sounds. Our first paradigm, studied both in human subjects and mice, reports species-specific differences in visually cued expectation of sound onset in a signal-in-noise detection task. A second paradigm performed in mice reveals the benefits of temporal regularity as a perceptual grouping cue when detecting repeating target tones in complex background noise. A final behavioral approach demonstrates significant improvements in frequency discrimination threshold and perceptual sensitivity when auditory targets are presented at a predictable temporal interval following motor self-initiation of the trial. Collectively, these three behavioral approaches identify paradigms to study top-down influences on sound perception that are amenable to head-fixed preparations in genetically tractable animals, where it is possible to monitor and manipulate particular nodes of the descending auditory pathway with unparalleled precision.
Collapse
Affiliation(s)
- Kameron K. Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Meenakshi M. Asokan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Yurika Watanabe
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Kenneth E. Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Daniel B. Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Asilador A, Llano DA. Top-Down Inference in the Auditory System: Potential Roles for Corticofugal Projections. Front Neural Circuits 2021; 14:615259. [PMID: 33551756 PMCID: PMC7862336 DOI: 10.3389/fncir.2020.615259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
It has become widely accepted that humans use contextual information to infer the meaning of ambiguous acoustic signals. In speech, for example, high-level semantic, syntactic, or lexical information shape our understanding of a phoneme buried in noise. Most current theories to explain this phenomenon rely on hierarchical predictive coding models involving a set of Bayesian priors emanating from high-level brain regions (e.g., prefrontal cortex) that are used to influence processing at lower-levels of the cortical sensory hierarchy (e.g., auditory cortex). As such, virtually all proposed models to explain top-down facilitation are focused on intracortical connections, and consequently, subcortical nuclei have scarcely been discussed in this context. However, subcortical auditory nuclei receive massive, heterogeneous, and cascading descending projections at every level of the sensory hierarchy, and activation of these systems has been shown to improve speech recognition. It is not yet clear whether or how top-down modulation to resolve ambiguous sounds calls upon these corticofugal projections. Here, we review the literature on top-down modulation in the auditory system, primarily focused on humans and cortical imaging/recording methods, and attempt to relate these findings to a growing animal literature, which has primarily been focused on corticofugal projections. We argue that corticofugal pathways contain the requisite circuitry to implement predictive coding mechanisms to facilitate perception of complex sounds and that top-down modulation at early (i.e., subcortical) stages of processing complement modulation at later (i.e., cortical) stages of processing. Finally, we suggest experimental approaches for future studies on this topic.
Collapse
Affiliation(s)
- Alexander Asilador
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Molecular and Integrative Physiology, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
20
|
Qi J, Zhang Z, He N, Liu X, Zhang C, Yan J. Cortical Stimulation Induces Excitatory Postsynaptic Potentials of Inferior Colliculus Neurons in a Frequency-Specific Manner. Front Neural Circuits 2020; 14:591986. [PMID: 33192337 PMCID: PMC7649762 DOI: 10.3389/fncir.2020.591986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022] Open
Abstract
Corticofugal modulation of auditory responses in subcortical nuclei has been extensively studied whereas corticofugal synaptic transmission must still be characterized. This study examined postsynaptic potentials of the corticocollicular system, i.e., the projections from the primary auditory cortex (AI) to the central nucleus of the inferior colliculus (ICc) of the midbrain, in anesthetized C57 mice. We used focal electrical stimulation at the microampere level to activate the AI (ESAI) and in vivo whole-cell current-clamp to record the membrane potentials of ICc neurons. Following the whole-cell patch-clamp recording of 88 ICc neurons, 42 ICc neurons showed ESAI-evoked changes in the membrane potentials. We found that the ESAI induced inhibitory postsynaptic potentials in 6 out of 42 ICc neurons but only when the stimulus current was 96 μA or higher. In the remaining 36 ICc neurons, excitatory postsynaptic potentials (EPSPs) were induced at a much lower stimulus current. The 36 ICc neurons exhibiting EPSPs were categorized into physiologically matched neurons (n = 12) when the characteristic frequencies of the stimulated AI and recorded ICc neurons were similar (≤1 kHz) and unmatched neurons (n = 24) when they were different (>1 kHz). Compared to unmatched neurons, matched neurons exhibited a significantly lower threshold of evoking noticeable EPSP, greater EPSP amplitude, and shorter EPSP latency. Our data allow us to propose that corticocollicular synaptic transmission is primarily excitatory and that synaptic efficacy is dependent on the relationship of the frequency tunings between AI and ICc neurons.
Collapse
Affiliation(s)
- Jiyao Qi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Na He
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiuping Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Caseng Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jun Yan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Circuit Mechanisms Underlying the Segregation and Integration of Parallel Processing Streams in the Inferior Colliculus. J Neurosci 2020; 40:6328-6344. [PMID: 32665405 DOI: 10.1523/jneurosci.0646-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/28/2020] [Accepted: 07/04/2020] [Indexed: 11/21/2022] Open
Abstract
The lateral cortex of the inferior colliculus (LCIC) forms a nexus between diverse multisensory, motor, and neuromodulatory streams. Like other integration hubs, it contains repeated neurochemical motifs with distinct inputs: GABA-rich modules are innervated by somatosensory structures, while auditory inputs to the LCIC target the surrounding extramodular matrix. To investigate potential mechanisms of convergence between these input streams, we used laser photostimulation circuit mapping to interrogate local LCIC circuits in adult mice of both sexes and found that input patterns are highly dependent on cell type (GABAergic/non-GABAergic) and location (module/matrix). At the circuit level, these inputs yield a directional flow of local information, primarily from the matrix to the modules. Further, the two compartments were found to project to distinct targets in the midbrain and thalamus. These data show that, while connectional modularity in the LCIC gives rise to segregated input-output channels, local circuits provide the architecture for integration between these two streams.SIGNIFICANCE STATEMENT Modularity is a widespread motif across the brain involving the segregation of structures into discrete subregions based on dichotomies in neurochemical expression or connectivity. The inferior colliculus is one such modular structure, containing auditory-recipient matrix regions and GABA-rich modules that are innervated by somatosensory inputs. While modularity suggests segregation of processing streams, here we show that local circuits in the inferior colliculus connect the module and matrix regions, providing an avenue for integration of information across compartments.
Collapse
|
22
|
Combining mGRASP and Optogenetics Enables High-Resolution Functional Mapping of Descending Cortical Projections. Cell Rep 2020; 24:1071-1080. [PMID: 30044974 PMCID: PMC6083038 DOI: 10.1016/j.celrep.2018.06.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
We have applied optogenetics and mGRASP, a light microscopy technique that labels synaptic contacts, to map the number and strength of defined corticocollicular (CC) connections. Using mGRASP, we show that CC projections form small, medium, and large synapses, and both the number and the distribution of synapse size vary among the IC regions. Using optogenetics, we show that low-frequency stimulation of CC axons expressing channelrhodopsin produces prolonged elevations of the CC miniature EPSC (mEPSC) rate. Functional analysis of CC mEPSCs reveals small-, medium-, and large-amplitude events that mirror the synaptic distributions observed with mGRASP. Our results reveal that descending ipsilateral projections dominate CC feedback via an increased number of large synaptic contacts, especially onto the soma of IC neurons. This study highlights the feasibility of combining microscopy (i.e., mGRASP) and optogenetics to reveal synaptic weighting of defined projections at the level of single neurons, enabling functional connectomic mapping in diverse neural circuits. Optogenetic axonal stimulation causes prolonged increases in quantal synaptic release Quantal and anatomical measures of synapse strength directly correspond Strength and cellular location of cortical inputs to midbrain are region specific
Collapse
|
23
|
Gourévitch B, Mahrt EJ, Bakay W, Elde C, Portfors CV. GABA A receptors contribute more to rate than temporal coding in the IC of awake mice. J Neurophysiol 2020; 123:134-148. [PMID: 31721644 DOI: 10.1152/jn.00377.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Speech is our most important form of communication, yet we have a poor understanding of how communication sounds are processed by the brain. Mice make great model organisms to study neural processing of communication sounds because of their rich repertoire of social vocalizations and because they have brain structures analogous to humans, such as the auditory midbrain nucleus inferior colliculus (IC). Although the combined roles of GABAergic and glycinergic inhibition on vocalization selectivity in the IC have been studied to a limited degree, the discrete contributions of GABAergic inhibition have only rarely been examined. In this study, we examined how GABAergic inhibition contributes to shaping responses to pure tones as well as selectivity to complex sounds in the IC of awake mice. In our set of long-latency neurons, we found that GABAergic inhibition extends the evoked firing rate range of IC neurons by lowering the baseline firing rate but maintaining the highest probability of firing rate. GABAergic inhibition also prevented IC neurons from bursting in a spontaneous state. Finally, we found that although GABAergic inhibition shaped the spectrotemporal response to vocalizations in a nonlinear fashion, it did not affect the neural code needed to discriminate vocalizations, based either on spiking patterns or on firing rate. Overall, our results emphasize that even if GABAergic inhibition generally decreases the firing rate, it does so while maintaining or extending the abilities of neurons in the IC to code the wide variety of sounds that mammals are exposed to in their daily lives.NEW & NOTEWORTHY GABAergic inhibition adds nonlinearity to neuronal response curves. This increases the neuronal range of evoked firing rate by reducing baseline firing. GABAergic inhibition prevents bursting responses from neurons in a spontaneous state, reducing noise in the temporal coding of the neuron. This could result in improved signal transmission to the cortex.
Collapse
Affiliation(s)
- Boris Gourévitch
- Institut de l'Audition, Institut Pasteur, INSERM, Sorbonne Université, F-75012 Paris, France.,CNRS, France
| | - Elena J Mahrt
- School of Biological Sciences, Washington State University, Vancouver, Washington
| | - Warren Bakay
- Institut de l'Audition, Institut Pasteur, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Cameron Elde
- School of Biological Sciences, Washington State University, Vancouver, Washington
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, Vancouver, Washington
| |
Collapse
|
24
|
Lamb-Echegaray ID, Noftz WA, Stinson JPC, Gabriele ML. Shaping of discrete auditory inputs to extramodular zones of the lateral cortex of the inferior colliculus. Brain Struct Funct 2019; 224:3353-3371. [PMID: 31729553 DOI: 10.1007/s00429-019-01979-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
The multimodal lateral cortex of the inferior colliculus (LCIC) exhibits a modular-extramodular micro-organization that is evident early in development. In addition to a set of neurochemical markers that reliably highlight its modular-extramodular organization (e.g. modules: GAD67-positive, extramodular zones: calretinin-positive, CR), mature projection patterns suggest that major LCIC afferents recognize and adhere to such a framework. In adult mice, distinct afferent projections appear segregated, with somatosensory inputs targeting LCIC modules and auditory inputs surrounding extramodular fields. Currently lacking is an understanding regarding the development and shaping of multimodal LCIC afferents with respect to its emerging modular-extramodular microarchitecture. Combining living slice tract-tracing and immunocytochemical approaches in GAD67-GFP knock-in mice, the present study characterizes the critical period of projection shaping for LCIC auditory afferents arising from its neighboring central nucleus (CNIC). Both crossed and uncrossed projection patterns exhibit LCIC extramodular mapping characteristics that emerge from initially diffuse distributions. Projection mismatch with GAD-defined modules and alignment with encompassing extramodular zones becomes increasingly clear over the early postnatal period (birth to postnatal day 12). CNIC inputs terminate almost exclusively in extramodular zones that express CR. These findings suggest multimodal LCIC inputs may initially be sparse and intermingle, prior to segregation into distinct processing streams. Future experiments are needed to determine the likely complex interactions and mechanisms (e.g. activity-dependent and independent) responsible for shaping early modality-specific LCIC circuits.
Collapse
Affiliation(s)
- Isabel D Lamb-Echegaray
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - William A Noftz
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jeremiah P C Stinson
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Mark L Gabriele
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA.
| |
Collapse
|
25
|
Zurita H, Rock C, Perkins J, Apicella AJ. A Layer-specific Corticofugal Input to the Mouse Superior Colliculus. Cereb Cortex 2019; 28:2817-2833. [PMID: 29077796 DOI: 10.1093/cercor/bhx161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
In the auditory cortex (AC), corticofugal projections arise from each level of the auditory system and are considered to provide feedback "loops" important to modulate the flow of ascending information. It is well established that the cortex can influence the response of neurons in the superior colliculus (SC) via descending corticofugal projections. However, little is known about the relative contribution of different pyramidal neurons to these projections in the SC. We addressed this question by taking advantage of anterograde and retrograde neuronal tracing to directly examine the laminar distribution, long-range projections, and electrophysiological properties of pyramidal neurons projecting from the AC to the SC of the mouse brain. Here we show that layer 5 cortico-superior-collicular pyramidal neurons act as bandpass filters, resonating with a broad peak at ∼3 Hz, whereas layer 6 neurons act as low-pass filters. The dissimilar subthreshold properties of layer 5 and layer 6 cortico-superior-collicular pyramidal neurons can be described by differences in the hyperpolarization-activated cyclic nucleotide-gated cation h-current (Ih). Ih also reduced the summation of short trains of artificial excitatory postsynaptic potentials injected at the soma of layer 5, but not layer 6, cortico-superior-collicular pyramidal neurons, indicating a differential dampening effect of Ih on these neurons.
Collapse
Affiliation(s)
- Hector Zurita
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Crystal Rock
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jessica Perkins
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alfonso Junior Apicella
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
26
|
Kommajosyula SP, Cai R, Bartlett E, Caspary DM. Top-down or bottom up: decreased stimulus salience increases responses to predictable stimuli of auditory thalamic neurons. J Physiol 2019; 597:2767-2784. [PMID: 30924931 DOI: 10.1113/jp277450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/25/2019] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Temporal imprecision leads to deficits in the comprehension of signals in cluttered acoustic environments, and the elderly are shown to use cognitive resources to disambiguate these signals. To mimic ageing in young rats, we delivered sound signals that are temporally degraded, which led to temporally imprecise neural codes. Instead of adaptation to repeated stimuli, with degraded signals, there was a relative increase in firing rates, similar to that seen in aged rats. We interpret this increase with repetition as a repair mechanism for strengthening the internal representations of degraded signals by the higher-order structures. ABSTRACT To better understand speech in challenging environments, older adults increasingly use top-down cognitive and contextual resources. The medial geniculate body (MGB) integrates ascending inputs with descending predictions to dynamically gate auditory representations based on salience and context. A previous MGB single-unit study found an increased preference for predictable sinusoidal amplitude modulated (SAM) stimuli in aged rats relative to young rats. The results suggested that the age-degraded/jittered up-stream acoustic code may engender an increased preference for predictable/repeating acoustic signals, possibly reflecting increased use of top-down resources. In the present study, we recorded from units in young-adult MGB, comparing responses to standard SAM with those evoked by less salient SAM (degraded) stimuli. We hypothesized that degrading the SAM stimulus would simulate the degraded ascending acoustic code seen in the elderly, increasing the preference for predictable stimuli. Single units were recorded from clusters of advanceable tetrodes implanted above the MGB of young-adult awake rats. Less salient SAM significantly increased the preference for predictable stimuli, especially at higher modulation frequencies. Rather than adaptation, higher modulation frequencies elicited increased numbers of spikes with each successive trial/repeat of the less salient SAM. These findings are consistent with previous findings obtained in aged rats suggesting that less salient acoustic signals engage the additional use of top-down resources, as reflected by an increased preference for repeating stimuli that enhance the representation of complex environmental/communication sounds.
Collapse
Affiliation(s)
- Srinivasa P Kommajosyula
- Southern Illinois University School of Medicine, , Department of Pharmacology, Springfield, IL, USA
| | - Rui Cai
- Southern Illinois University School of Medicine, , Department of Pharmacology, Springfield, IL, USA
| | - Edward Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Donald M Caspary
- Southern Illinois University School of Medicine, , Department of Pharmacology, Springfield, IL, USA
| |
Collapse
|
27
|
Slater BJ, Sons SK, Yudintsev G, Lee CM, Llano DA. Thalamocortical and Intracortical Inputs Differentiate Layer-Specific Mouse Auditory Corticocollicular Neurons. J Neurosci 2019; 39:256-270. [PMID: 30361396 PMCID: PMC6325253 DOI: 10.1523/jneurosci.3352-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/21/2022] Open
Abstract
Long-range descending projections from the auditory cortex play key roles in shaping response properties in the inferior colliculus. The auditory corticocollicular projection is massive and heterogeneous, with axons emanating from cortical layers 5 and 6, and plays a key role in directing plastic changes in the inferior colliculus. However, little is known about the cortical and thalamic networks within which corticocollicular neurons are embedded. Here, laser scanning photostimulation glutamate uncaging and photoactivation of channelrhodopsin-2 were used to probe the local and long-range network differences between preidentified layer 5 and layer 6 auditory corticocollicular neurons from male and female mice in vitro Layer 5 corticocollicular neurons were found to vertically integrate supragranular excitatory and inhibitory input to a substantially greater degree than their layer 6 counterparts. In addition, all layer 5 corticocollicular neurons received direct and large thalamic inputs from channelrhodopsin-2-labeled thalamocortical fibers, whereas such inputs were less common in layer 6 corticocollicular neurons. Finally, a new low-calcium/synaptic blockade approach to separate direct from indirect inputs using laser photostimulation was validated. These data demonstrate that layer 5 and 6 corticocollicular neurons receive distinct sets of cortical and thalamic inputs, supporting the hypothesis that they have divergent roles in modulating the inferior colliculus. Furthermore, the direct connection between the auditory thalamus and layer 5 corticocollicular neurons reveals a novel and rapid link connecting ascending and descending pathways.SIGNIFICANCE STATEMENT Descending projections from the cortex play a critical role in shaping the response properties of sensory neurons. The projection from the auditory cortex to the inferior colliculus is a massive, yet poorly understood, pathway emanating from two distinct cortical layers. Here we show, using a range of optical techniques, that mouse auditory corticocollicular neurons from different layers are embedded into different cortical and thalamic networks. Specifically, we observed that layer 5 corticocollicular neurons integrate information across cortical lamina and receive direct thalamic input. The latter connection provides a hyperdirect link between acoustic sensation and descending control, thus demonstrating a novel mechanism for rapid "online" modulation of sensory perception.
Collapse
Affiliation(s)
- Bernard J Slater
- Neuroscience Program and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Stacy K Sons
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Georgiy Yudintsev
- Neuroscience Program and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Christopher M Lee
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| | - Daniel A Llano
- Neuroscience Program and
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, and
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801
| |
Collapse
|
28
|
Malmierca MS, Niño-Aguillón BE, Nieto-Diego J, Porteros Á, Pérez-González D, Escera C. Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus. Neuroimage 2019; 184:889-900. [DOI: 10.1016/j.neuroimage.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022] Open
|
29
|
Gay SM, Brett CA, Stinson JPC, Gabriele ML. Alignment of EphA4 and ephrin-B2 expression patterns with developing modularity in the lateral cortex of the inferior colliculus. J Comp Neurol 2018; 526:2706-2721. [PMID: 30156295 DOI: 10.1002/cne.24525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023]
Abstract
In the multimodal lateral cortex of the inferior colliculus (LCIC), there are two neurochemically and connectionally distinct compartments, termed modular and extramodular zones. Modular fields span LCIC layer 2 and are recipients of somatosensory afferents, while encompassing extramodular domains receive auditory inputs. Recently, in developing mice, we identified several markers (among them glutamic acid decarboxylase, GAD) that consistently label the same modular set, and a reliable extramodular marker, calretinin, (CR). Previous reports from our lab show similar modular-extramodular patterns for certain Eph-ephrin guidance members, although their precise alignment with the developing LCIC neurochemical framework has yet to be addressed. Here we confirm in the nascent LCIC complementary GAD/CR-positive compartments, and characterize the registry of EphA4 and ephrin-B2 expression patterns with respect to its emerging modular-extramodular organization. Immunocytochemical approaches in GAD67-GFP knock-in mice reveal patchy EphA4 and ephrin-B2 domains that precisely align with GAD-positive LCIC modules, and are complementary to CR-defined extramodular zones. Such patterning was detectable neonatally, yielding discrete compartments prior to hearing onset. A dense plexus of EphA4-positive fibers filled modules, surrounding labeled ephrin-B2 and GAD cell populations. The majority of observed GABAergic neurons within modular boundaries were also positive for ephrin-B2. These results suggest an early compartmentalization of the LCIC that is likely instructed in part through Eph-ephrin guidance mechanisms. The overlap of developing LCIC neurochemical and guidance patterns is discussed in the context of its seemingly segregated multimodal input-output streams.
Collapse
Affiliation(s)
- Sean M Gay
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Cooper A Brett
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | | | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|
30
|
Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Res 2018; 1694:94-103. [DOI: 10.1016/j.brainres.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
|
31
|
Leong ATL, Dong CM, Gao PP, Chan RW, To A, Sanes DH, Wu EX. Optogenetic auditory fMRI reveals the effects of visual cortical inputs on auditory midbrain response. Sci Rep 2018; 8:8736. [PMID: 29880842 PMCID: PMC5992211 DOI: 10.1038/s41598-018-26568-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/10/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory cortices contain extensive descending (corticofugal) pathways, yet their impact on brainstem processing - particularly across sensory systems - remains poorly understood. In the auditory system, the inferior colliculus (IC) in the midbrain receives cross-modal inputs from the visual cortex (VC). However, the influences from VC on auditory midbrain processing are unclear. To investigate whether and how visual cortical inputs affect IC auditory responses, the present study combines auditory blood-oxygenation-level-dependent (BOLD) functional MRI (fMRI) with cell-type specific optogenetic manipulation of visual cortex. The results show that predominant optogenetic excitation of the excitatory pyramidal neurons in the infragranular layers of the primary VC enhances the noise-evoked BOLD fMRI responses within the IC. This finding reveals that inputs from VC influence and facilitate basic sound processing in the auditory midbrain. Such combined optogenetic and auditory fMRI approach can shed light on the large-scale modulatory effects of corticofugal pathways and guide detailed electrophysiological studies in the future.
Collapse
Affiliation(s)
- Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Celia M Dong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Patrick P Gao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Russell W Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Anthea To
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY, 10003, United States
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
32
|
Dillingham CH, Gay SM, Behrooz R, Gabriele ML. Modular-extramodular organization in developing multisensory shell regions of the mouse inferior colliculus. J Comp Neurol 2017; 525:3742-3756. [PMID: 28786102 DOI: 10.1002/cne.24300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/28/2017] [Indexed: 11/07/2022]
Abstract
The complex neuroanatomical connections of the inferior colliculus (IC) and its major subdivisions offer a juxtaposition of segregated processing streams with distinct organizational features. While the tonotopically layered central nucleus is well-documented, less is known about functional compartments in the neighboring lateral cortex (LCIC). In addition to a laminar framework, LCIC afferent-efferent patterns suggest a multimodal mosaic, consisting of a patchy modular network with surrounding extramodular domains. This study utilizes several neurochemical markers that reveal an emerging LCIC modular-extramodular microarchitecture. In newborn and post-hearing C57BL/6J and CBA/CaJ mice, histochemical and immunocytochemical stains were performed for acetylcholinesterase (AChE), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), glutamic acid decarboxylase (GAD), cytochrome oxidase (CO), and calretinin (CR). Discontinuous layer 2 modules are positive for AChE, NADPH-d, GAD, and CO throughout the rostrocaudal LCIC. While not readily apparent at birth, discrete cell clusters emerge over the first postnatal week, yielding an identifiable modular network prior to hearing onset. Modular boundaries continue to become increasingly distinct with age, as surrounding extramodular fields remain largely negative for each marker. Alignment of modular markers in serial sections suggests each highlight the same periodic patchy network throughout the nascent LCIC. In contrast, CR patterns appear complementary, preferentially staining extramodular LCIC zones. Double-labeling experiments confirm that NADPH-d, the most consistent developmental modular marker, and CR label separate, nonoverlapping LCIC compartments. Determining how this emerging modularity may align with similar LCIC patch-matrix-like Eph/ephrin guidance patterns, and how each interface with, and potentially influence developing multimodal LCIC projection configurations is discussed.
Collapse
Affiliation(s)
| | - Sean M Gay
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Roxana Behrooz
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|
33
|
Responses to Predictable versus Random Temporally Complex Stimuli from Single Units in Auditory Thalamus: Impact of Aging and Anesthesia. J Neurosci 2017; 36:10696-10706. [PMID: 27733619 DOI: 10.1523/jneurosci.1454-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022] Open
Abstract
Human aging studies suggest that an increased use of top-down knowledge-based resources would compensate for degraded upstream acoustic information to accurately identify important temporally rich signals. Sinusoidal amplitude-modulated (SAM) stimuli have been used to mimic the fast-changing temporal features in speech and species-specific vocalizations. Single units were recorded from auditory thalamus [medial geniculate body (MGB)] of young awake, aged awake, young anesthetized, and aged anesthetized rats. SAM stimuli were modulated between 2 and 1024 Hz with the modulation frequency (fm) changed randomly (RAN) across trials or sequentially (SEQ) after several repeated trials. Units were found to be RAN-preferring, SEQ-preferring, or nonselective based on total firing rate. Significant anesthesia and age effects were found. The majority (86%) of young anesthetized units preferred RAN SAM stimuli; significantly fewer young awake units (51%, p < 0.0001) preferred RAN SAM signals with 16% preferring SEQ SAM. Compared with young awake units, there was a significant increase of aged awake units preferring SEQ SAM (30%, p < 0.05). We examined RAN versus SEQ differences across fms by measuring selective fm areas under the rate modulation transfer function curve. The largest age-related differences from awake animals were found for mid-to-high fms in MGB units, with young units preferring RAN SAM while aged units showed a greater preference for SEQ-presented SAM. Together, these findings suggest that aged MGB units/animals employ increased top-down mediated stimulus context to enhance processing of "expected" temporally rich stimuli, especially at more challenging higher fms. SIGNIFICANCE STATEMENT Older individuals compensate for impaired ascending acoustic information by increasing use of cortical cognitive and attentional resources. The interplay between ascending and descending influences in the thalamus may serve to enhance the salience of speech signals that are degraded as they ascend to the cortex. The present findings demonstrate that medial geniculate body units from awake rats show an age-related preference for predictable modulated signals relative to randomly presented signals, especially at higher, more challenging modulation frequencies. Conversely, units from anesthetized animals, with little top-down influences, strongly preferred randomly presented modulated sequences. These results suggest a neuronal substrate for an age-related increase in experience/attentional-based influences in processing temporally complex auditory information in the auditory thalamus.
Collapse
|
34
|
Fan CSD, Zhu X, Dosch HG, von Stutterheim C, Rupp A. Language related differences of the sustained response evoked by natural speech sounds. PLoS One 2017; 12:e0180441. [PMID: 28727776 PMCID: PMC5519032 DOI: 10.1371/journal.pone.0180441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
In tonal languages, such as Mandarin Chinese, the pitch contour of vowels discriminates lexical meaning, which is not the case in non-tonal languages such as German. Recent data provide evidence that pitch processing is influenced by language experience. However, there are still many open questions concerning the representation of such phonological and language-related differences at the level of the auditory cortex (AC). Using magnetoencephalography (MEG), we recorded transient and sustained auditory evoked fields (AEF) in native Chinese and German speakers to investigate language related phonological and semantic aspects in the processing of acoustic stimuli. AEF were elicited by spoken meaningful and meaningless syllables, by vowels, and by a French horn tone. Speech sounds were recorded from a native speaker and showed frequency-modulations according to the pitch-contours of Mandarin. The sustained field (SF) evoked by natural speech signals was significantly larger for Chinese than for German listeners. In contrast, the SF elicited by a horn tone was not significantly different between groups. Furthermore, the SF of Chinese subjects was larger when evoked by meaningful syllables compared to meaningless ones, but there was no significant difference regarding whether vowels were part of the Chinese phonological system or not. Moreover, the N100m gave subtle but clear evidence that for Chinese listeners other factors than purely physical properties play a role in processing meaningful signals. These findings show that the N100 and the SF generated in Heschl’s gyrus are influenced by language experience, which suggests that AC activity related to specific pitch contours of vowels is influenced in a top-down fashion by higher, language related areas. Such interactions are in line with anatomical findings and neuroimaging data, as well as with the dual-stream model of language of Hickok and Poeppel that highlights the close and reciprocal interaction between superior temporal gyrus and sulcus.
Collapse
Affiliation(s)
- Christina Siu-Dschu Fan
- Institut für Theoretische Physik, Heidelberg, Germany
- Storz Medical AG, Tägerwilen, Switzerland
| | - Xingyu Zhu
- Department for General and Applied Linguistics, University of Heidelberg, Heidelberg, Germany
| | | | | | - André Rupp
- Section of Biomagnetism, Department of Neurology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
35
|
Connectional Modularity of Top-Down and Bottom-Up Multimodal Inputs to the Lateral Cortex of the Mouse Inferior Colliculus. J Neurosci 2017; 36:11037-11050. [PMID: 27798184 DOI: 10.1523/jneurosci.4134-15.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 09/04/2016] [Indexed: 12/14/2022] Open
Abstract
The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information.
Collapse
|
36
|
Synaptic distribution and plasticity in primary auditory cortex (A1) exhibits laminar and cell-specific changes in the deaf. Hear Res 2017; 353:122-134. [PMID: 28697947 DOI: 10.1016/j.heares.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022]
Abstract
The processing sequence through primary auditory cortex (A1) is impaired by deafness as evidenced by reduced neuronal activation in A1 of cochlear-implanted deaf cats. Such a loss of neuronal excitation should be manifest as changes in excitatory synaptic number and/or size, for which the post-synaptic correlate is the dendritic spine. Therefore, the present study sought evidence for this functional disruption using Golgi-Cox/light microscopic techniques that examined spine-bearing neurons and their dendritic spine features across all laminae in A1 of early-deaf (ototoxic lesion <1 month; raised into adulthood >16 months) and hearing cats. Surprisingly, in the early-deaf significant increases in spine density and size were observed in the supragranular layers, while significant reductions in spine density were observed for spiny non-pyramidal, but not pyramidal, neurons in the granular layer. No changes in dendritic spine density consistent with loss of excitatory inputs were seen for infragranular neurons. These results indicate that long-term early-deafness induces plastic changes in the excitatory circuitry of A1 that are laminar and cell-specific. An additional finding was that, unlike the expected abundance of stellate neurons that characterize the granular layer of other primary sensory cortices, pyramidal neurons predominate within layer 4 of A1. Collectively, these observations are important for understanding how neuronal connectional configurations contribute to region-specific processing capabilities in normal brains as well as those with altered sensory experiences.
Collapse
|
37
|
Maruthy S, Kumar UA, Gnanateja GN. Functional Interplay Between the Putative Measures of Rostral and Caudal Efferent Regulation of Speech Perception in Noise. J Assoc Res Otolaryngol 2017; 18:635-648. [PMID: 28447225 DOI: 10.1007/s10162-017-0623-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/22/2017] [Indexed: 01/23/2023] Open
Abstract
Efferent modulation has been demonstrated to be very important for speech perception, especially in the presence of noise. We examined the functional relationship between two efferent systems: the rostral and caudal efferent pathways and their individual influences on speech perception in noise. Earlier studies have shown that these two efferent mechanisms were correlated with speech perception in noise. However, previously, these mechanisms were studied in isolation, and their functional relationship with each other was not investigated. We used a correlational design to study the relationship if any, between these two mechanisms in young and old normal hearing individuals. We recorded context-dependent brainstem encoding as an index of rostral efferent function and contralateral suppression of otoacoustic emissions as an index of caudal efferent function in groups with good and poor speech perception in noise. These efferent mechanisms were analysed for their relationship with each other and with speech perception in noise. We found that the two efferent mechanisms did not show any functional relationship. Interestingly, both the efferent mechanisms correlated with speech perception in noise and they even emerged as significant predictors. Based on the data, we posit that the two efferent mechanisms function relatively independently but with a common goal of fine-tuning the afferent input and refining auditory perception in degraded listening conditions.
Collapse
Affiliation(s)
- Sandeep Maruthy
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India
| | - U Ajith Kumar
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India
| | - G Nike Gnanateja
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India.
| |
Collapse
|
38
|
Patel MB, Sons S, Yudintsev G, Lesicko AMH, Yang L, Taha GA, Pierce SM, Llano DA. Anatomical characterization of subcortical descending projections to the inferior colliculus in mouse. J Comp Neurol 2017; 525:885-900. [PMID: 27560718 PMCID: PMC5222726 DOI: 10.1002/cne.24106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
Descending projections from the thalamus and related structures to the midbrain are evolutionarily highly conserved. However, the basic organization of this auditory thalamotectal pathway has not yet been characterized. The purpose of this study was to obtain a better understanding of the anatomical and neurochemical features of this pathway. Analysis of the distributions of retrogradely labeled cells after focal injections of retrograde tracer into the inferior colliculus (IC) of the mouse revealed that most of the subcortical descending projections originated in the brachium of the IC and the paralaminar portions of the auditory thalamus. In addition, the vast majority of thalamotectal cells were found to be negative for the calcium-binding proteins calbindin, parvalbumin, or calretinin. Using two different strains of GAD-GFP mice, as well as immunostaining for GABA, we found that a subset of neurons in the brachium of the IC is GABAergic, suggesting that part of this descending pathway is inhibitory. Finally, dual retrograde injections into the IC and amygdala plus corpus striatum as well into the IC and auditory cortex did not reveal any double labeling. These data suggest that the thalamocollicular pathway comprises a unique population of thalamic neurons that do not contain typical calcium-binding proteins and do not project to other paralaminar thalamic forebrain targets, and that a previously undescribed descending GABAergic pathway emanates from the brachium of the IC. J. Comp. Neurol. 525:885-900, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mili B Patel
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Stacy Sons
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Georgiy Yudintsev
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Luye Yang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gehad A Taha
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Scott M Pierce
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
39
|
Normann RA, Fernandez E. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J Neural Eng 2016; 13:061003. [PMID: 27762237 DOI: 10.1088/1741-2560/13/6/061003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper briefly describes some of the recent progress in the development of penetrating microelectrode arrays and highlights the use of two of these devices, Utah electrode arrays and Utah slanted electrode arrays, in two therapeutic interventions: recording volitional skeletal motor commands from the central nervous system, and recording motor commands and evoking somatosensory percepts in the peripheral nervous system (PNS). The paper also briefly explores other potential sites for microelectrode array interventions that could be profitably pursued and that could have important consequences in enhancing the quality of life of patients that has been compromised by disorders of the central and PNSs.
Collapse
Affiliation(s)
- Richard A Normann
- Departments of Bioengineering and Ophthalmology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
40
|
Fujimoto H, Konno K, Watanabe M, Jinno S. Late postnatal shifts of parvalbumin and nitric oxide synthase expression within the GABAergic and glutamatergic phenotypes of inferior colliculus neurons. J Comp Neurol 2016; 525:868-884. [PMID: 27560447 DOI: 10.1002/cne.24104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 01/24/2023]
Abstract
The inferior colliculus (IC) is partitioned into three subdivisions: the dorsal and lateral cortices (DC and LC) and the central nucleus (ICC), and serves as an integration center of auditory information. Recent studies indicate that a certain population of IC neurons may represent the non-GABAergic phenotype, while they express well-established cortical/hippocampal GABAergic neuron markers. In this study we used the optical disector to investigate the phenotype of IC neurons expressing parvalbumin (PV) and/or nitric oxide synthase (NOS) in C57BL/6J mice during the late postnatal period. Four major types of IC neurons were defined by the presence (+) or absence (-) of PV, NOS, and glutamic acid decarboxylase 67 (GAD67): PV+ /NOS- /GAD67+ , PV+ /NOS+ /GAD67+ , PV+ /NOS- /GAD67- , and PV- /NOS+ /GAD67- . Fluorescent in situ hybridization for vesicular glutamate transporter 2 mRNA indicated that almost all GAD67- IC neurons represented the glutamatergic phenotype. The numerical densities (NDs) of total GAD67+ IC neurons remained unchanged in all subdivisions. The NDs of PV+ /NOS- /GAD67+ neurons and PV- /NOS+ /GAD67- neurons were reduced with age in the ICC, while they remained unchanged in the DC and LC. By contrast, the NDs of PV+ /NOS+ /GAD67+ neurons and PV+ /NOS- /GAD67- neurons were increased with age in the ICC, although there were no changes in the DC and LC. The cell body size of GAD67+ IC neurons did not vary according to the expression of PV with or without NOS. The present findings indicate that the expression of PV and NOS may shift with age within the GABAergic and glutamatergic phenotypes of IC neurons during the late postnatal period. J. Comp. Neurol. 525:868-884, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hisataka Fujimoto
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kotaro Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Sadowski RN, Stebbings KA, Slater BJ, Bandara SB, Llano DA, Schantz SL. Developmental exposure to PCBs alters the activation of the auditory cortex in response to GABA A antagonism. Neurotoxicology 2016; 56:86-93. [PMID: 27422581 DOI: 10.1016/j.neuro.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023]
Abstract
Developmental exposure of rats to polychlorinated biphenyls (PCBs) causes impairments in hearing and in the functioning of peripheral and central auditory structures. Additionally, recent work from our laboratory has demonstrated an increase in audiogenic seizures. The current study aimed to further characterize the effects of PCBs on auditory brain structures by investigating whether developmental exposure altered the magnitude of activation in the auditory cortex (AC) in response to electrical stimulation of thalamocortical afferents. Long-Evans female rats were fed cookies containing either 0 or 6mg/kg of an environmental PCB mixture daily from 4 weeks prior to breeding until postnatal day 21. Brain slices containing projections from the thalamus to the AC were collected from adult female offspring and were bathed in artificial cerebrospinal fluid (aCSF) alone, aCSF containing a gamma-aminobutyric acid (GABA) receptor antagonist (200nM SR95531), and aCSF containing an and N-methyl-d-aspartate (NMDA) receptor antagonist (50μM AP5). During each of these drug conditions, electrical stimulations ranging from 25 to 600μA were delivered to the thalamocortical afferents. Activation of the AC was measured using flavoprotein autofluorescence imaging. Although there were no differences seen between treatment groups in the aCSF condition, there were significant increases in the ratio of aCSF/SR95531 activation in slices from PCB-exposed animals compared to control animals. This effect was seen in both the upper and lower layers of the AC. No differences in activation were noted between treatment groups when slices were exposed to AP5. These data suggest that developmental PCB exposure leads to increased sensitivity to antagonism of GABAA receptors in the AC without a change in NMDA-mediated intrinsic excitability.
Collapse
Affiliation(s)
- Renee N Sadowski
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Kevin A Stebbings
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Bernard J Slater
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Suren B Bandara
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel A Llano
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Susan L Schantz
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| |
Collapse
|
42
|
Impact of peripheral hearing loss on top-down auditory processing. Hear Res 2016; 343:4-13. [PMID: 27260270 DOI: 10.1016/j.heares.2016.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 01/17/2023]
Abstract
The auditory system consists of an intricate set of connections interposed between hierarchically arranged nuclei. The ascending pathways carrying sound information from the cochlea to the auditory cortex are, predictably, altered in instances of hearing loss resulting from blockage or damage to peripheral auditory structures. However, hearing loss-induced changes in descending connections that emanate from higher auditory centers and project back toward the periphery are still poorly understood. These pathways, which are the hypothesized substrate of high-level contextual and plasticity cues, are intimately linked to the ascending stream, and are thereby also likely to be influenced by auditory deprivation. In the current report, we review both the human and animal literature regarding changes in top-down modulation after peripheral hearing loss. Both aged humans and cochlear implant users are able to harness the power of top-down cues to disambiguate corrupted sounds and, in the case of aged listeners, may rely more heavily on these cues than non-aged listeners. The animal literature also reveals a plethora of structural and functional changes occurring in multiple descending projection systems after peripheral deafferentation. These data suggest that peripheral deafferentation induces a rebalancing of bottom-up and top-down controls, and that it will be necessary to understand the mechanisms underlying this rebalancing to develop better rehabilitation strategies for individuals with peripheral hearing loss.
Collapse
|
43
|
Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex. Brain Sci 2016; 6:brainsci6020013. [PMID: 27089371 PMCID: PMC4931490 DOI: 10.3390/brainsci6020013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 01/24/2023] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix molecules that are associated with the closing of the critical period, among other functions. In the adult brain, PNNs surround specific types of neurons, however the expression of PNNs in the auditory system of the mouse, particularly at the level of the midbrain and forebrain, has not been fully described. In addition, the association of PNNs with excitatory and inhibitory cell types in these structures remains unknown. Therefore, we sought to investigate the expression of PNNs in the inferior colliculus (IC), thalamic reticular nucleus (TRN) and primary auditory cortex (A1) of the mouse brain by labeling with wisteria floribunda agglutinin (WFA). To aid in the identification of inhibitory neurons in these structures, we employed the vesicular GABA transporter (VGAT)-Venus transgenic mouse strain, which robustly expresses an enhanced yellow-fluorescent protein (Venus) natively in nearly all gamma-amino butyric acid (GABA)-ergic inhibitory neurons, thus enabling a rapid and unambiguous assessment of inhibitory neurons throughout the nervous system. Our results demonstrate that PNNs are expressed throughout the auditory midbrain and forebrain, but vary in their local distribution. PNNs are most dense in the TRN and least dense in A1. Furthermore, PNNs are preferentially associated with inhibitory neurons in A1 and the TRN, but not in the IC of the mouse. These data suggest regionally specific roles for PNNs in auditory information processing.
Collapse
|
44
|
Wallace MM, Harris JA, Brubaker DQ, Klotz CA, Gabriele ML. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem. Hear Res 2016; 335:64-75. [PMID: 26906676 DOI: 10.1016/j.heares.2016.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 01/06/2023]
Abstract
Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience.
Collapse
Affiliation(s)
- Matthew M Wallace
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - J Aaron Harris
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Donald Q Brubaker
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Caitlyn A Klotz
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Mark L Gabriele
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA.
| |
Collapse
|
45
|
Shen L, Zhao L, Hong B. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain. Front Neural Circuits 2015; 9:55. [PMID: 26483641 PMCID: PMC4589587 DOI: 10.3389/fncir.2015.00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/16/2015] [Indexed: 11/13/2022] Open
Abstract
Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC) changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor) was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron's best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry.
Collapse
Affiliation(s)
- Li Shen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing, China
| | - Lingyun Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing, China
| |
Collapse
|
46
|
Pannese A, Grandjean D, Frühholz S. Subcortical processing in auditory communication. Hear Res 2015; 328:67-77. [DOI: 10.1016/j.heares.2015.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
|
47
|
Abstract
In the auditory cortex (AC), interhemispheric communication is involved in sound localization processes underlying spatial hearing. However, the neuronal microcircuits recruited by the callosal projections are unknown. We addressed this fundamental question by taking advantage of optogenetics and examining directly the functional effects of interhemispheric inputs to specific pyramidal neurons in layer 5 of the mouse AC, defined by their output as either corticocortical (CCort) or corticocollicular (CCol). We found that callosal projections suppress the activity of CCort pyramidal neurons, but facilitate firing of CCol pyramidal neurons. This difference is mechanistically explained by callosal activation of fast-spiking parvalbumin-expressing interneurons (FS-PARV), which provide selective inhibition to CCort pyramidal neurons. Our results establish two distinct previously unknown cortical circuits underlying either callosal suppression (callosal projections → FS-PARV → CCort) or facilitation (callosal projections → CCol) of projecting neurons in layer 5 of the AC and attribute a specific function to a genetically defined type of interneuron in interhemispheric communication.
Collapse
|
48
|
Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nat Commun 2015; 6:7224. [PMID: 26068082 PMCID: PMC4467028 DOI: 10.1038/ncomms8224] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/20/2015] [Indexed: 12/19/2022] Open
Abstract
Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities. Defense against environmental threats is essential for survival, yet the neural circuits mediating innate defensive behaviours are not completely understood. Here the authors demonstrate that descending projections from the auditory cortex to the midbrain mediate innate, sound-evoked flight behaviour.
Collapse
|
49
|
Ayala YA, Udeh A, Dutta K, Bishop D, Malmierca MS, Oliver DL. Differences in the strength of cortical and brainstem inputs to SSA and non-SSA neurons in the inferior colliculus. Sci Rep 2015; 5:10383. [PMID: 25993334 PMCID: PMC4438612 DOI: 10.1038/srep10383] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/10/2015] [Indexed: 11/12/2022] Open
Abstract
In an ever changing auditory scene, change detection is an ongoing task performed by the auditory brain. Neurons in the midbrain and auditory cortex that exhibit stimulus-specific adaptation (SSA) may contribute to this process. Those neurons adapt to frequent sounds while retaining their excitability to rare sounds. Here, we test whether neurons exhibiting SSA and those without are part of the same networks in the inferior colliculus (IC). We recorded the responses to frequent and rare sounds and then marked the sites of these neurons with a retrograde tracer to correlate the source of projections with the physiological response. SSA neurons were confined to the non-lemniscal subdivisions and exhibited broad receptive fields, while the non-SSA were confined to the central nucleus and displayed narrow receptive fields. SSA neurons receive strong inputs from auditory cortical areas and very poor or even absent projections from the brainstem nuclei. On the contrary, the major sources of inputs to the neurons that lacked SSA were from the brainstem nuclei. These findings demonstrate that auditory cortical inputs are biased in favor of IC synaptic domains that are populated by SSA neurons enabling them to compare top-down signals with incoming sensory information from lower areas.
Collapse
Affiliation(s)
- Yaneri A Ayala
- Auditory Neurophysiology Laboratory. Institute of Neuroscience of Castilla Y León, University of Salamanca, C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain
| | - Adanna Udeh
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | - Kelsey Dutta
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | - Deborah Bishop
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | - Manuel S Malmierca
- 1] Auditory Neurophysiology Laboratory. Institute of Neuroscience of Castilla Y León, University of Salamanca, C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain [2] Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA [3] Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| |
Collapse
|
50
|
Cell-specific activity-dependent fractionation of layer 2/3→5B excitatory signaling in mouse auditory cortex. J Neurosci 2015; 35:3112-23. [PMID: 25698747 DOI: 10.1523/jneurosci.0836-14.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Auditory cortex (AC) layer 5B (L5B) contains both corticocollicular neurons, a type of pyramidal-tract neuron projecting to the inferior colliculus, and corticocallosal neurons, a type of intratelencephalic neuron projecting to contralateral AC. Although it is known that these neuronal types have distinct roles in auditory processing and different response properties to sound, the synaptic and intrinsic mechanisms shaping their input-output functions remain less understood. Here, we recorded in brain slices of mouse AC from retrogradely labeled corticocollicular and neighboring corticocallosal neurons in L5B. Corticocollicular neurons had, on average, lower input resistance, greater hyperpolarization-activated current (Ih), depolarized resting membrane potential, faster action potentials, initial spike doublets, and less spike-frequency adaptation. In paired recordings between single L2/3 and labeled L5B neurons, the probabilities of connection, amplitude, latency, rise time, and decay time constant of the unitary EPSC were not different for L2/3→corticocollicular and L2/3→corticocallosal connections. However, short trains of unitary EPSCs showed no synaptic depression in L2/3→corticocollicular connections, but substantial depression in L2/3→corticocallosal connections. Synaptic potentials in L2/3→corticocollicular connections decayed faster and showed less temporal summation, consistent with increased Ih in corticocollicular neurons, whereas synaptic potentials in L2/3→corticocallosal connections showed more temporal summation. Extracellular L2/3 stimulation at two different rates resulted in spiking in L5B neurons; for corticocallosal neurons the spike rate was frequency dependent, but for corticocollicular neurons it was not. Together, these findings identify cell-specific intrinsic and synaptic mechanisms that divide intracortical synaptic excitation from L2/3 to L5B into two functionally distinct pathways with different input-output functions.
Collapse
|