1
|
Makani P, Thioux M, Koops EA, Pyott SJ, van Dijk P. Hyperacusis in Tinnitus Individuals Is Associated with Smaller Gray Matter Volumes in the Supplementary Motor Area Regardless of Hearing Levels. Brain Sci 2024; 14:726. [PMID: 39061466 PMCID: PMC11275185 DOI: 10.3390/brainsci14070726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Recent evidence suggests a connection between hyperacusis and the motor system of the brain. For instance, our recent study reported that hyperacusis in participants with tinnitus and hearing loss is associated with smaller gray matter volumes in the supplementary motor area (SMA). Given that hearing loss can affect gray matter changes in tinnitus, this study aimed to determine if the changes reported in our previous findings of smaller SMA gray matter volumes in hyperacusis persist in the absence of hearing loss. Data for this study were gathered from four prior studies conducted between 2004 and 2019 at the University Medical Centre Groningen (UMCG). A total of 101 participants with tinnitus and either clinically normal hearing (normal hearing with tinnitus or NHT, n = 35) or bilateral sensorineural hearing loss (hearing loss with tinnitus or HLT, n = 66) were included across four studies. Hyperacusis was determined by a score of ≥22 on the Hyperacusis Questionnaire (HQ). In the NHT group, 22 (63%) participants scored ≥22 on the HQ (NHT with hyperacusis: mean age 44.1 years, 12 females), while in the HLT group, 25 (38%) participants scored ≥22 on the HQ (HLT with hyperacusis: mean age 59.5 years, 10 females). The 2 × 2 between-group ANOVAs revealed that hyperacusis is associated with smaller SMA gray matter volumes, regardless of hearing levels. Notably, the smaller SMA gray matter volumes in hyperacusis were primarily influenced by the attentional subscales of the HQ. The association between hyperacusis and the motor system may indicate a constant alertness to sounds and a readiness for motor action.
Collapse
Affiliation(s)
- Punitkumar Makani
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Marc Thioux
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Elouise A. Koops
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sonja J. Pyott
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Pim van Dijk
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (P.M.); (E.A.K.); (S.J.P.); (P.v.D.)
- Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
2
|
Yasoda-Mohan A, Faubert J, Ost J, Kropotov JD, Vanneste S. Investigating sensitivity to multi-domain prediction errors in chronic auditory phantom perception. Sci Rep 2024; 14:11036. [PMID: 38744906 PMCID: PMC11094085 DOI: 10.1038/s41598-024-61045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The perception of a continuous phantom in a sensory domain in the absence of an external stimulus is explained as a maladaptive compensation of aberrant predictive coding, a proposed unified theory of brain functioning. If this were true, these changes would occur not only in the domain of the phantom percept but in other sensory domains as well. We confirm this hypothesis by using tinnitus (continuous phantom sound) as a model and probe the predictive coding mechanism using the established local-global oddball paradigm in both the auditory and visual domains. We observe that tinnitus patients are sensitive to changes in predictive coding not only in the auditory but also in the visual domain. We report changes in well-established components of event-related EEG such as the mismatch negativity. Furthermore, deviations in stimulus characteristics were correlated with the subjective tinnitus distress. These results provide an empirical confirmation that aberrant perceptions are a symptom of a higher-order systemic disorder transcending the domain of the percept.
Collapse
Affiliation(s)
- Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, School of Psychology, Trinity College Institute for Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jocelyn Faubert
- Faubert Lab, School of Optometry, University of Montreal, Montreal, Canada
| | - Jan Ost
- Brain Research Center for Advanced International Innovative and Interdisciplinary Neuromodulation, Ghent, Belgium
| | - Juri D Kropotov
- N.P. Bechtereva Institute of the Human Brain of Russian Academy of Sciences, St. Petersburg, Russia
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Psychology, Trinity College Institute for Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland.
- Global Brain Health Institute, Trinity College Dublin, Dublin 2, Ireland.
- Brain Research Center for Advanced International Innovative and Interdisciplinary Neuromodulation, Ghent, Belgium.
| |
Collapse
|
3
|
Zhang C, Wang X, Ding Z, Zhou H, Liu P, Xue X, Wang L, Jiang Y, Chen J, Shen W, Yang S, Wang F. Study on tinnitus-related electroencephalogram microstates in patients with vestibular schwannomas. Front Neurosci 2023; 17:1159019. [PMID: 37090804 PMCID: PMC10118047 DOI: 10.3389/fnins.2023.1159019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Tinnitus is closely associated with cognition functioning. In order to clarify the central reorganization of tinnitus in patients with vestibular schwannoma (VS), this study explored the aberrant dynamics of electroencephalogram (EEG) microstates and their correlations with tinnitus features in VS patients. Clinical and EEG data were collected from 98 VS patients, including 76 with tinnitus and 22 without tinnitus. Microstates were clustered into four categories. Our EEG microstate analysis revealed that VS patients with tinnitus exhibited an increased frequency of microstate C compared to those without tinnitus. Furthermore, correlation analysis demonstrated that the Tinnitus Handicap Inventory (THI) score was negatively associated with the duration of microstate A and positively associated with the frequency of microstate C. These findings suggest that the time series and syntax characteristics of EEG microstates differ significantly between VS patients with and without tinnitus, potentially reflecting abnormal allocation of neural resources and transition of functional brain activity. Our results provide a foundation for developing diverse treatments for tinnitus in VS patients.
Collapse
Affiliation(s)
- Chi Zhang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Zhan Tan Temple Outpatient Department, Central Medical Branch of PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xiaoguang Wang
- Zhan Tan Temple Outpatient Department, Central Medical Branch of PLA General Hospital, Beijing, China
| | - Zhiwei Ding
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hanwen Zhou
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Peng Liu
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xinmiao Xue
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Li Wang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yuke Jiang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jiyue Chen
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Weidong Shen
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shiming Yang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fangyuan Wang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Fangyuan Wang,
| |
Collapse
|
4
|
Smeele SJ, Adhia DB, De Ridder D. Feasibility and Safety of High-Definition Infraslow Pink Noise Stimulation for Treating Chronic Tinnitus—A Randomized Placebo-Controlled Trial. Neuromodulation 2022:S1094-7159(22)01339-3. [DOI: 10.1016/j.neurom.2022.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022]
|
5
|
De Ridder D, Vanneste S, Song JJ, Adhia D. Tinnitus and the triple network model: a perspective. Clin Exp Otorhinolaryngol 2022; 15:205-212. [PMID: 35835548 PMCID: PMC9441510 DOI: 10.21053/ceo.2022.00815] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Tinnitus is defined as the conscious awareness of a sound without an identifiable external sound source, and tinnitus disorder as tinnitus with associated suffering. Chronic tinnitus has been anatomically and phenomenologically separated into three pathways: a lateral “sound” pathway, a medial “suffering” pathway, and a descending noise-canceling pathway. Here, the triple network model is proposed as a unifying framework common to neuropsychiatric disorders. It proposes that abnormal interactions among three cardinal networks—the self-representational default mode network, the behavioral relevance-encoding salience network and the goal-oriented central executive network—underlie brain disorders. Tinnitus commonly leads to negative cognitive, emotional, and autonomic responses, phenomenologically expressed as tinnitus-related suffering, processed by the medial pathway. This anatomically overlaps with the salience network, encoding the behavioral relevance of the sound stimulus. Chronic tinnitus can also become associated with the self-representing default mode network and becomes an intrinsic part of the self-percept. This is likely an energy-saving evolutionary adaptation, by detaching tinnitus from sympathetic energy-consuming activity. Eventually, this can lead to functional disability by interfering with the central executive network. In conclusion, these three pathways can be extended to a triple network model explaining all tinnitus-associated comorbidities. This model paves the way for the development of individualized treatment modalities.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand (Aotearoa)
| | - Sven Vanneste
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jae-Jin Song
- Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand (Aotearoa)
| |
Collapse
|
6
|
Mennink LM, Koops EA, Langers DRM, Aalbers MW, van Dijk JMC, van Dijk P. Cerebellar Gray Matter Volume in Tinnitus. Front Neurosci 2022; 16:862873. [PMID: 35573294 PMCID: PMC9099039 DOI: 10.3389/fnins.2022.862873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tinnitus is the perception of sound without an external source. The flocculus (FL) and paraflocculus (PFL), which are small lobules of the cerebellum, have recently been implicated in its pathophysiology. In a previous study, the volume of the (P)FL-complex correlated with tinnitus severity in patients that had undergone cerebellopontine angle (CPA) tumor removal. In this study, the relation between tinnitus and gray matter volume (GMV) of the (P)FL-complex, GMV of the other cerebellar lobules and GMV of the cerebellar nuclei is investigated in otherwise healthy participants. Data was processed using the SUIT toolbox, which is dedicated to analysis of imaging data of the human cerebellum. GMV of all cerebellar lobules and nuclei were similar between tinnitus and non-tinnitus participants. Moreover, no relation was present between tinnitus severity, as measured by the Tinnitus Handicap Inventory, and (P)FL-complex GMV, tonsil GMV, or total cerebellar cortical GMV. These results suggest that in otherwise healthy participants, in contrast to participants after CPA tumor removal, no relation between the GMV of neither the (P)FL-complex nor other cerebellar lobules and tinnitus presence and severity exists. These findings indicate that a relation only exists when the (P)FL-complex is damaged, for instance by a CPA tumor. Alternatively, it is possible that differences in (P)FL-complex GMVs are too small to detect with a voxel-based morphometry study. Therefore, the role of the (P)FL-complex in tinnitus remains to be further studied.
Collapse
Affiliation(s)
- Lilian M. Mennink
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Research School of Behavioral and Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Lilian M. Mennink,
| | - Elouise A. Koops
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Research School of Behavioral and Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Dave R. M. Langers
- Department of Bio-informatics, Hanze University of Applied Sciences Groningen, Groningen, Netherlands
| | - Marlien W. Aalbers
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Research School of Behavioral and Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - J. Marc C. van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Research School of Behavioral and Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Pim van Dijk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Research School of Behavioral and Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Sherlock LP, Brungart DS. Functional impact of bothersome tinnitus on cognitive test performance. Int J Audiol 2021; 60:1000-1008. [PMID: 34028309 DOI: 10.1080/14992027.2021.1909760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Individuals with bothersome tinnitus frequently report their concentration is affected. Given that tinnitus is the leading service-connected disability compensated by the United States Department of Veterans Affairs, it is essential to determine whether tinnitus has a functional impact on the operational performance of Service members. Previous studies demonstrated that people with tinnitus perform more poorly on cognitive tests of selective attention and memory than those without tinnitus. This study aimed to compare performance between participants with and without tinnitus on visually based tests of selective attention (flanker task) and short-term memory (spatial letter location) that were self-administered under three auditory conditions (quiet, broadband noise and speech) using a tablet-based test protocol. DESIGN Experimental. STUDY SAMPLE Thirty participants with bothersome tinnitus and 30 control participants, matched for age and hearing loss. RESULTS The results revealed a significantly larger flanker effect and shorter memory span in the tinnitus group compared to the control group, consistent with previous studies. Performance accuracy was comparable between the groups. CONCLUSIONS The results suggest bothersome tinnitus may affect cognitive efficiency more than cognitive performance. The tablet-based protocol has the potential to be implemented clinically as a functional measure of the impact of bothersome tinnitus on concentration.
Collapse
Affiliation(s)
- LaGuinn P Sherlock
- Army Hearing Program, U.S. Army Public Health Center, Aberdeen, MD, USA.,Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | |
Collapse
|
8
|
Altered brain responses to emotional facial expressions in tinnitus patients. PROGRESS IN BRAIN RESEARCH 2021; 262:189-207. [PMID: 33931179 DOI: 10.1016/bs.pbr.2021.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tinnitus, the phantom perception of sound, is a frequent disorder that can lead to severe distress and stress-related comorbidity. The pathophysiological mechanisms involved in the etiology of tinnitus are still under exploration. Electrophysiological and functional neuroimaging studies provide increasing evidence for abnormal functioning in auditory but also in non-auditory, e.g., emotional, brain areas. In order to elucidate alterations of affective processing in patients with chronic tinnitus, we used functional magnetic resonance imaging (fMRI) to measure neural responses to emotionally expressive and neutral faces. Twelve patients with chronic tinnitus and a group of 11 healthy controls, matched for age, sex, hearing loss and depressive symptoms were investigated. While viewing emotionally expressive faces compared to neutral faces brain activations in the tinnitus patients differed from those of the controls in a cluster that encompasses the amygdala, the hippocampus and the parahippocampal gyrus bilaterally. Whereas in controls affective faces induced higher brain activation in these regions than neutral faces, these regions in tinnitus patients were deactivated. Our results (1) provide evidence for alterations of affective processing of facial expressions in tinnitus patients indicating general domain-unspecific dysfunctions in emotion processing and (2) indicate the involvement of medial temporal areas in the pathophysiology of tinnitus.
Collapse
|
9
|
Abstract
Tinnitus is the chronic perception of a phantom sound with different levels of related distress. Past research has elucidated interactions of tinnitus distress with audiological, affective and further clinical variables. The influence of tinnitus distress on cognition is underinvestigated. Our study aims at investigating specific influences of tinnitus distress and further associated predictors on cognition in a cohort of n = 146 out-ward clinical tinnitus patients. Age, educational level, hearing loss, Tinnitus Questionnaire (TQ) score, tinnitus duration, speech in noise (SIN), stress, anxiety and depression, and psychological well-being were included as predictors of a machine learning regression approach (elastic net) in three models with scores of a multiple choice vocabulary test (MWT-B), or two trail-making tests (TMT-A and TMT-B), as dependent variables. TQ scores predicted lower MWT-B scores and higher TMT-B test completion time. Stress, emotional, and psychological variables were not found to be relevant predictors in all models with the exception of small positive influences of SIN and depression on TMT-B. Effect sizes were small to medium for all models and predictors. Results are indicative of specific influence of tinnitus distress on cognitive performance, especially on general or crystallized intelligence and executive functions. More research is needed at the delicate intersection of tinnitus distress and cognitive skills needed in daily functioning.
Collapse
|
10
|
Clarke NA, Henshaw H, Akeroyd MA, Adams B, Hoare DJ. Associations Between Subjective Tinnitus and Cognitive Performance: Systematic Review and Meta-Analyses. Trends Hear 2020; 24:2331216520918416. [PMID: 32436477 PMCID: PMC7243410 DOI: 10.1177/2331216520918416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tinnitus is the perception of sound in the absence of a corresponding external sound source, and bothersome tinnitus has been linked to poorer cognitive performance. This review comprehensively quantifies the association between tinnitus and different domains of cognitive performance. The review protocol was preregistered and published in a peer-reviewed journal. The review and analyses were reported according to Preferred Reporting Items for Systematic Review and Meta-analysis guidelines. Peer-reviewed literature was searched using electronic databases to find studies featuring participants with tinnitus who had undertaken measures of cognitive performance. Studies were assessed for quality and categorized according to an established cognitive framework. Random-effects meta-analyses were performed on various cognitive domains with potential moderator variables assessed where possible. Thirty-eight records were included in the analysis from a total of 1,863 participants. Analyses showed that tinnitus is associated with poorer executive function, processing speed, general short-term memory, and general learning and retrieval. Narrow cognitive domains of Inhibition and Shifting (within executive function) and learning and retrieval (within general learning and retrieval) were also associated with tinnitus.
Collapse
Affiliation(s)
- Nathan A Clarke
- NIHR Nottingham Biomedical Research Centre.,Division of Clinical Neuroscience, School of Medicine, University of Nottingham
| | - Helen Henshaw
- NIHR Nottingham Biomedical Research Centre.,Division of Clinical Neuroscience, School of Medicine, University of Nottingham
| | - Michael A Akeroyd
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham
| | - Bethany Adams
- NIHR Nottingham Biomedical Research Centre.,Division of Clinical Neuroscience, School of Medicine, University of Nottingham
| | - Derek J Hoare
- NIHR Nottingham Biomedical Research Centre.,Division of Clinical Neuroscience, School of Medicine, University of Nottingham
| |
Collapse
|
11
|
Shoushtarian M, Alizadehsani R, Khosravi A, Acevedo N, McKay CM, Nahavandi S, Fallon JB. Objective measurement of tinnitus using functional near-infrared spectroscopy and machine learning. PLoS One 2020; 15:e0241695. [PMID: 33206675 PMCID: PMC7673524 DOI: 10.1371/journal.pone.0241695] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic tinnitus is a debilitating condition which affects 10-20% of adults and can severely impact their quality of life. Currently there is no objective measure of tinnitus that can be used clinically. Clinical assessment of the condition uses subjective feedback from individuals which is not always reliable. We investigated the sensitivity of functional near-infrared spectroscopy (fNIRS) to differentiate individuals with and without tinnitus and to identify fNIRS features associated with subjective ratings of tinnitus severity. We recorded fNIRS signals in the resting state and in response to auditory or visual stimuli from 25 individuals with chronic tinnitus and 21 controls matched for age and hearing loss. Severity of tinnitus was rated using the Tinnitus Handicap Inventory and subjective ratings of tinnitus loudness and annoyance were measured on a visual analogue scale. Following statistical group comparisons, machine learning methods including feature extraction and classification were applied to the fNIRS features to classify patients with tinnitus and controls and differentiate tinnitus at different severity levels. Resting state measures of connectivity between temporal regions and frontal and occipital regions were significantly higher in patients with tinnitus compared to controls. In the tinnitus group, temporal-occipital connectivity showed a significant increase with subject ratings of loudness. Also in this group, both visual and auditory evoked responses were significantly reduced in the visual and auditory regions of interest respectively. Naïve Bayes classifiers were able to classify patients with tinnitus from controls with an accuracy of 78.3%. An accuracy of 87.32% was achieved using Neural Networks to differentiate patients with slight/ mild versus moderate/ severe tinnitus. Our findings show the feasibility of using fNIRS and machine learning to develop an objective measure of tinnitus. Such a measure would greatly benefit clinicians and patients by providing a tool to objectively assess new treatments and patients' treatment progress.
Collapse
Affiliation(s)
- Mehrnaz Shoushtarian
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Melbourne, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Melbourne, Australia
| | - Nicola Acevedo
- The Bionics Institute, East Melbourne, Victoria, Australia
| | - Colette M. McKay
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Melbourne, Australia
| | - James B. Fallon
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Wolak T, Cieśla K, Pluta A, Włodarczyk E, Biswal B, Skarżyński H. Altered Functional Connectivity in Patients With Sloping Sensorineural Hearing Loss. Front Hum Neurosci 2019; 13:284. [PMID: 31507391 PMCID: PMC6713935 DOI: 10.3389/fnhum.2019.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sensory deprivation, such as hearing loss, has been demonstrated to change the intrinsic functional connectivity (FC) of the brain, as measured with resting-state functional magnetic resonance imaging (rs-fMRI). Patients with sloping sensorineural hearing loss (SNHL) are a unique population among the hearing impaired, as they have all been exposed to some auditory input throughout their lifespan and all use spoken language. Materials and Methods Twenty patients with SNHL and 21 control subjects participated in a rs-fMRI study. Whole-brain seed-driven FC maps were obtained, with audiological scores of patients, including hearing loss severity and speech performance, used as covariates. Results Most profound differences in FC were found between patients with prelingual (before language development, PRE) vs. postlingual onset (after language development, POST) of SNHL. An early onset was related to enhancement in long-range network connections, including the default-mode network, the dorsal-attention network and the fronto-parietal network, as well as in local sensory networks, the visual and the sensorimotor. A number of multisensory brain regions in frontal and parietal cortices, as well as the cerebellum, were also more internally connected. We interpret these effects as top-down mechanisms serving optimization of multisensory experience in SNHL with a prelingual onset. At the same time, POST patients showed enhanced FC between the salience network and multisensory parietal areas, as well as with the hippocampus, when they were compared to those with PRE hearing loss. Signal in several cortex regions subserving visual processing was also more intra-correlated in POST vs. PRE patients. This outcome might point to more attention resources directed to multisensory as well as memory experience. Finally, audiological scores correlated with FC in several sensory and high-order brain regions in all patients. Conclusion The results show that a sloping hearing loss is related to altered resting-state brain organization. Effects were shown in attention and cognitive control networks, as well as visual and sensorimotor regions. Specifically, we found that even in a partial hearing deficit (affecting only some of the hearing frequency ranges), the age at the onset affects the brain function differently, pointing to the role of sensitive periods in brain development.
Collapse
Affiliation(s)
- Tomasz Wolak
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| | - Katarzyna Cieśla
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| | - Agnieszka Pluta
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland.,Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Elżbieta Włodarczyk
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| | - Bharat Biswal
- Department of Biomedical Engineering and Department of Radiology, New Jersey Medical School, NJIT, Newark, NJ, United States
| | - Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| |
Collapse
|
13
|
Tai Y, Husain FT. The Role of Cognitive Control in Tinnitus and Its Relation to Speech-in-Noise Performance. J Audiol Otol 2018; 23:1-7. [PMID: 30554504 PMCID: PMC6348307 DOI: 10.7874/jao.2018.00409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
Self-reported difficulties in speech-in-noise (SiN) recognition are common among tinnitus patients. Whereas hearing impairment that usually co-occurs with tinnitus can explain such difficulties, recent studies suggest that tinnitus patients with normal hearing sensitivity still show decreased SiN understanding, indicating that SiN difficulties cannot be solely attributed to changes in hearing sensitivity. In fact, cognitive control, which refers to a variety of top-down processes that human beings use to complete their daily tasks, has been shown to be critical for SiN recognition, as well as the key to understand cognitive inefficiencies caused by tinnitus. In this article, we review studies investigating the association between tinnitus and cognitive control using behavioral and brain imaging assessments, as well as those examining the effect of tinnitus on SiN recognition. In addition, three factors that can affect cognitive control in tinnitus patients, including hearing sensitivity, age, and severity of tinnitus, are discussed to elucidate the association among tinnitus, cognitive control, and SiN recognition. Although a possible central or cognitive involvement has always been postulated in the observed SiN impairments in tinnitus patients, there is as yet no direct evidence to underpin this assumption, as few studies have addressed both SiN performance and cognitive control in one tinnitus cohort. Future studies should aim at incorporating SiN tests with various subjective and objective methods that evaluate cognitive performance to better understand the relationship between SiN difficulties and cognitive control in tinnitus patients.
Collapse
Affiliation(s)
- Yihsin Tai
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Fatima T Husain
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
14
|
What's what in auditory cortices? Neuroimage 2018; 176:29-40. [DOI: 10.1016/j.neuroimage.2018.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022] Open
|
15
|
Cai Y, Huang D, Chen Y, Yang H, Wang CD, Zhao F, Liu J, Sun Y, Chen G, Chen X, Xiong H, Zheng Y. Deviant Dynamics of Resting State Electroencephalogram Microstate in Patients With Subjective Tinnitus. Front Behav Neurosci 2018; 12:122. [PMID: 29988458 PMCID: PMC6024160 DOI: 10.3389/fnbeh.2018.00122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022] Open
Abstract
Given the importance of central reorganization and tinnitus, we undertook the current study to investigate changes to electroencephalogram (EEG) microstates and their association with the clinical symptoms in tinnitus. High-density (128 channel) EEG was used to explore changes in microstate features in 15 subjects with subjective tinnitus and 17 age-matched controls. Correlations between microstate parameters and subjective tinnitus symptoms were also analyzed. An increased presence of class A microstate and decreased presence of class D microstate were found in coverage and lifespan of microstate parameters in the tinnitus patients. Syntax analysis also demonstrated an aberrant pattern of activity, with reduced transitions from class D to class B in tinnitus patients. Moreover, a significant positive correlation of tinnitus loudness with increased lifespan of microstate class C was found. Significant differences in temporal characteristics and syntax of the EEG microstate classes were found at rest between tinnitus patients and the healthy subjects. Our study indicates that EEG microstates may provide a possible valuable method to study large-scale brain networks, which may in turn be beneficial to investigation of the neurophysiological mechanisms behind tinnitus.
Collapse
Affiliation(s)
- Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Dong Huang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Yanhong Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Chang-Dong Wang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Fei Zhao
- Department of Speech Language Therapy and Hearing Science, Cardiff Metropolitan University, Cardiff, United Kingdom.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yingfeng Sun
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Xiaoting Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Husain FT. Neural networks of tinnitus in humans: Elucidating severity and habituation. Hear Res 2016; 334:37-48. [DOI: 10.1016/j.heares.2015.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
|