1
|
Digregorio G, Redouté JM. Electromagnetic Energy Harvester Targeting Wearable and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:2311. [PMID: 38610523 PMCID: PMC11014051 DOI: 10.3390/s24072311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
This work presents a miniaturized electromagnetic energy harvester (EMEH) based on two coils moving in a head-to-head permanent magnet tower. The two coils are separated by a set distance so that the applied force moves the EMEH from one equilibrium position to another. In this configuration, the harvester produces energy in two different working modes: when a force is applied to the moving part or when an external random acceleration is applied to the whole system. A custom test bench has been designed to characterize the behavior of this energy harvester under a variety of conditions encountered in wearable applications. Notably, at 10 Hz and 1.32 g RMS acceleration, our inertial EMEH demonstrates its capability to sustain a consistent output power of 1696 μW within a total volume of 22.39 cm3, showcasing its efficiency in environments with erratic stimuli typical of wearable and biomedical applications. The presented EMEH is compared with reported inertial EMEH structures to extract its design limitations as well as future improvements, situating the present work in a comprehensive state-of-the-art and defining a generic performance target for biomedical and wearable applications.
Collapse
Affiliation(s)
- Gabriel Digregorio
- Department of Electrical Engineering, ULiège University, 4000 Liège, Belgium;
| | | |
Collapse
|
2
|
Alvarez F, Kipping D, Nogueira W. A computational model to simulate spectral modulation and speech perception experiments of cochlear implant users. Front Neuroinform 2023; 17:934472. [PMID: 37006637 PMCID: PMC10061543 DOI: 10.3389/fninf.2023.934472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Speech understanding in cochlear implant (CI) users presents large intersubject variability that may be related to different aspects of the peripheral auditory system, such as the electrode-nerve interface and neural health conditions. This variability makes it more challenging to proof differences in performance between different CI sound coding strategies in regular clinical studies, nevertheless, computational models can be helpful to assess the speech performance of CI users in an environment where all these physiological aspects can be controlled. In this study, differences in performance between three variants of the HiRes Fidelity 120 (F120) sound coding strategy are studied with a computational model. The computational model consists of (i) a processing stage with the sound coding strategy, (ii) a three-dimensional electrode-nerve interface that accounts for auditory nerve fiber (ANF) degeneration, (iii) a population of phenomenological ANF models, and (iv) a feature extractor algorithm to obtain the internal representation (IR) of the neural activity. As the back-end, the simulation framework for auditory discrimination experiments (FADE) was chosen. Two experiments relevant to speech understanding were performed: one related to spectral modulation threshold (SMT), and the other one related to speech reception threshold (SRT). These experiments included three different neural health conditions (healthy ANFs, and moderate and severe ANF degeneration). The F120 was configured to use sequential stimulation (F120-S), and simultaneous stimulation with two (F120-P) and three (F120-T) simultaneously active channels. Simultaneous stimulation causes electric interaction that smears the spectrotemporal information transmitted to the ANFs, and it has been hypothesized to lead to even worse information transmission in poor neural health conditions. In general, worse neural health conditions led to worse predicted performance; nevertheless, the detriment was small compared to clinical data. Results in SRT experiments indicated that performance with simultaneous stimulation, especially F120-T, were more affected by neural degeneration than with sequential stimulation. Results in SMT experiments showed no significant difference in performance. Although the proposed model in its current state is able to perform SMT and SRT experiments, it is not reliable to predict real CI users' performance yet. Nevertheless, improvements related to the ANF model, feature extraction, and predictor algorithm are discussed.
Collapse
Affiliation(s)
- Franklin Alvarez
- Medizinische Hochschule Hannover, Hannover, Germany
- Cluster of Excellence “Hearing4All”, Hannover, Germany
| | - Daniel Kipping
- Medizinische Hochschule Hannover, Hannover, Germany
- Cluster of Excellence “Hearing4All”, Hannover, Germany
| | - Waldo Nogueira
- Medizinische Hochschule Hannover, Hannover, Germany
- Cluster of Excellence “Hearing4All”, Hannover, Germany
| |
Collapse
|
3
|
Langner F, Arenberg JG, Büchner A, Nogueira W. Assessing the relationship between neural health measures and speech performance with simultaneous electric stimulation in cochlear implant listeners. PLoS One 2021; 16:e0261295. [PMID: 34898654 PMCID: PMC8668108 DOI: 10.1371/journal.pone.0261295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The relationship between electrode-nerve interface (ENI) estimates and inter-subject differences in speech performance with sequential and simultaneous channel stimulation in adult cochlear implant listeners were explored. We investigated the hypothesis that individuals with good ENIs would perform better with simultaneous compared to sequential channel stimulation speech processing strategies than those estimated to have poor ENIs. METHODS Fourteen postlingually deaf implanted cochlear implant users participated in the study. Speech understanding was assessed with a sentence test at signal-to-noise ratios that resulted in 50% performance for each user with the baseline strategy F120 Sequential. Two simultaneous stimulation strategies with either two (Paired) or three sets of virtual channels (Triplet) were tested at the same signal-to-noise ratio. ENI measures were estimated through: (I) voltage spread with electrical field imaging, (II) behavioral detection thresholds with focused stimulation, and (III) slope (IPG slope effect) and 50%-point differences (dB offset effect) of amplitude growth functions from electrically evoked compound action potentials with two interphase gaps. RESULTS A significant effect of strategy on speech understanding performance was found, with Triplets showing a trend towards worse speech understanding performance than sequential stimulation. Focused thresholds correlated positively with the difference required to reach most comfortable level (MCL) between Sequential and Triplet strategies, an indirect measure of channel interaction. A significant offset effect (difference in dB between 50%-point for higher eCAP growth function slopes with two IPGs) was observed. No significant correlation was observed between the slopes for the two IPGs tested. None of the measures used in this study correlated with the differences in speech understanding scores between strategies. CONCLUSIONS The ENI measure based on behavioral focused thresholds could explain some of the difference in MCLs, but none of the ENI measures could explain the decrease in speech understanding with increasing pairs of simultaneously stimulated electrodes in processing strategies.
Collapse
Affiliation(s)
- Florian Langner
- Department of Otorhinolaryngology, Hannover Medical School and Cluster of Excellence Hearing4all, Hanover, Germany
| | - Julie G. Arenberg
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States of America
| | - Andreas Büchner
- Department of Otorhinolaryngology, Hannover Medical School and Cluster of Excellence Hearing4all, Hanover, Germany
| | - Waldo Nogueira
- Department of Otorhinolaryngology, Hannover Medical School and Cluster of Excellence Hearing4all, Hanover, Germany
| |
Collapse
|
4
|
Saoji AA, Graham M, Stein A, Koka K. Analysis of electrode impedance and its subcomponents for lateral wall, mid-scala, and perimodiolar electrodes in cochlear implants. Cochlear Implants Int 2021; 23:87-94. [PMID: 34895078 DOI: 10.1080/14670100.2021.2000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Electrode impedances play an important role in cochlear implant patient management. During clinical visits, electrode impedances are calculated from a single point voltage waveform. In the present study, multipoint electrode impedance analysis was performed to study electrode impedance and its subcomponents in patients with three different types of cochlear implant electrode arrays. DESIGN Voltage waveforms were measured at six different time points during the cathodic phase of a biphasic pulse in forty-seven cochlear implant patients with perimodiolar, mid-scala, or lateral wall electrode arrays. Multipoint electrode impedances were used to determine access resistance and polarization impedance. RESULTS Access resistance of approximately 5 kΩ was calculated across the three different electrode arrays. Mid-scala electrodes showed a smaller increase in impedances as a function of pulse duration compared to the other electrodes. Patients with lower impedances showed higher capacitance and lower resistance, suggesting that differences in electrochemical reaction at the electrodes' surface can influence impedances in cochlear implants. CONCLUSIONS Analysis of cochlear implant electrode impedances and their subcomponents provides valuable information about resistance to the flow of current between stimulating and return electrodes, and build an understanding of the contribution of electrochemical processes used to deliver electrical stimulation to the auditory nerve.
Collapse
Affiliation(s)
- Aniket A Saoji
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Madison Graham
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Amy Stein
- Research and Technology, Advanced Bionics, Valencia, CA, USA
| | - Kanthaiah Koka
- Research and Technology, Advanced Bionics, Valencia, CA, USA
| |
Collapse
|
5
|
Carlyon RP, Goehring T. Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J Assoc Res Otolaryngol 2021; 22:481-508. [PMID: 34432222 PMCID: PMC8476711 DOI: 10.1007/s10162-021-00811-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cochlear implants (CIs) are the world's most successful sensory prosthesis and have been the subject of intense research and development in recent decades. We critically review the progress in CI research, and its success in improving patient outcomes, from the turn of the century to the present day. The review focuses on the processing, stimulation, and audiological methods that have been used to try to improve speech perception by human CI listeners, and on fundamental new insights in the response of the auditory system to electrical stimulation. The introduction of directional microphones and of new noise reduction and pre-processing algorithms has produced robust and sometimes substantial improvements. Novel speech-processing algorithms, the use of current-focusing methods, and individualised (patient-by-patient) deactivation of subsets of electrodes have produced more modest improvements. We argue that incremental advances have and will continue to be made, that collectively these may substantially improve patient outcomes, but that the modest size of each individual advance will require greater attention to experimental design and power. We also briefly discuss the potential and limitations of promising technologies that are currently being developed in animal models, and suggest strategies for researchers to collectively maximise the potential of CIs to improve hearing in a wide range of listening situations.
Collapse
Affiliation(s)
- Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
| | - Tobias Goehring
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|
6
|
Saoji AA, Adkins WJ, Graham MK, Carlson ML. Does early activation within hours after cochlear implant surgery influence electrode impedances? Int J Audiol 2021; 61:520-525. [PMID: 34278935 DOI: 10.1080/14992027.2021.1942569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study aims to determine if early device activation can influence cochlear implant electrode impedances by providing electrical stimulation within hours after cochlear implant surgery. DESIGN Electrode impedances were measured intraoperatively, at device activation, and one-month after device activation in three groups: users whose devices were activated (1) on the same day (Same Day), (2) the next day (Next Day), and (3) 10-14 days (Standard), after cochlear implant surgery. STUDY SAMPLE Electrode impedances are reported in fifty-one patients implanted with a Cochlear™ Nucleus® Cochlear Implant. RESULTS Compared to intraoperative levels, impedances dropped within hours for the Same Day activation group (p < 0.001) and continued dropping on the next day after surgery (p < 0.001). Similarly, electrode impedances were significantly (p < 0.001) lower at device activation for the Next Day group as compared to their intraoperative measurements. For Standard activation, impedances increased significantly from intraoperative levels, prior to device activation (p < 0.001). One-month after initial activation, impedances were not statistically different between the Same Day, Next Day, and Standard activation groups. CONCLUSIONS Early device activation does not influence long-term impedances in a clinically meaningful manner.
Collapse
Affiliation(s)
- Aniket A Saoji
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Weston J Adkins
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Madison K Graham
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Matthew L Carlson
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic School of Medicine, Rochester, MN, USA
| |
Collapse
|
7
|
The effect of increased channel interaction on speech perception with cochlear implants. Sci Rep 2021; 11:10383. [PMID: 34001987 PMCID: PMC8128897 DOI: 10.1038/s41598-021-89932-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Cochlear implants (CIs) are neuroprostheses that partially restore hearing for people with severe-to-profound hearing loss. While CIs can provide good speech perception in quiet listening situations for many, they fail to do so in environments with interfering sounds for most listeners. Previous research suggests that this is due to detrimental interaction effects between CI electrode channels, limiting their function to convey frequency-specific information, but evidence is still scarce. In this study, an experimental manipulation called spectral blurring was used to increase channel interaction in CI listeners using Advanced Bionics devices with HiFocus 1J and MS electrode arrays to directly investigate its causal effect on speech perception. Instead of using a single electrode per channel as in standard CI processing, spectral blurring used up to 6 electrodes per channel simultaneously to increase the overlap between adjacent frequency channels as would occur in cases with severe channel interaction. Results demonstrated that this manipulation significantly degraded CI speech perception in quiet by 15% and speech reception thresholds in babble noise by 5 dB when all channels were blurred by a factor of 6. Importantly, when channel interaction was increased just on a subset of electrodes, speech scores were mostly unaffected and were only significantly degraded when the 5 most apical channels were blurred. These apical channels convey information up to 1 kHz at the apical end of the electrode array and are typically located at angular insertion depths of about 250 up to 500°. These results confirm and extend earlier findings indicating that CI speech perception may not benefit from deactivating individual channels along the array and that efforts should instead be directed towards reducing channel interaction per se and in particular for the most-apical electrodes. Hereby, causal methods such as spectral blurring could be used in future research to control channel interaction effects within listeners for evaluating compensation strategies.
Collapse
|
8
|
Kludt E, Nogueira W, Lenarz T, Buechner A. A sound coding strategy based on a temporal masking model for cochlear implants. PLoS One 2021; 16:e0244433. [PMID: 33417608 PMCID: PMC7793249 DOI: 10.1371/journal.pone.0244433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Auditory masking occurs when one sound is perceptually altered by the presence of another sound. Auditory masking in the frequency domain is known as simultaneous masking and in the time domain is known as temporal masking or non-simultaneous masking. This works presents a sound coding strategy that incorporates a temporal masking model to select the most relevant channels for stimulation in a cochlear implant (CI). A previous version of the strategy, termed psychoacoustic advanced combination encoder (PACE), only used a simultaneous masking model for the same purpose, for this reason the new strategy has been termed temporal-PACE (TPACE). We hypothesized that a sound coding strategy that focuses on stimulating the auditory nerve with pulses that are as masked as possible can improve speech intelligibility for CI users. The temporal masking model used within TPACE attenuates the simultaneous masking thresholds estimated by PACE over time. The attenuation is designed to fall exponentially with a strength determined by a single parameter, the temporal masking half-life T½. This parameter gives the time interval at which the simultaneous masking threshold is halved. The study group consisted of 24 postlingually deaf subjects with a minimum of six months experience after CI activation. A crossover design was used to compare four variants of the new temporal masking strategy TPACE (T½ ranging between 0.4 and 1.1 ms) with respect to the clinical MP3000 strategy, a commercial implementation of the PACE strategy, in two prospective, within-subject, repeated-measure experiments. The outcome measure was speech intelligibility in noise at 15 to 5 dB SNR. In two consecutive experiments, the TPACE with T½ of 0.5 ms obtained a speech performance increase of 11% and 10% with respect to the MP3000 (T½ = 0 ms), respectively. The improved speech test scores correlated with the clinical performance of the subjects: CI users with above-average outcome in their routine speech tests showed higher benefit with TPACE. It seems that the consideration of short-acting temporal masking can improve speech intelligibility in CI users. The half-live with the highest average speech perception benefit (0.5 ms) corresponds to time scales that are typical for neuronal refractory behavior.
Collapse
Affiliation(s)
- Eugen Kludt
- Department of Otolaryngology, Medical University of Hannover, Hanover, Germany
| | - Waldo Nogueira
- Department of Otolaryngology, Medical University of Hannover, Hanover, Germany
- Hearing4all, Oldenburg, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Medical University of Hannover, Hanover, Germany
- Hearing4all, Oldenburg, Germany
| | - Andreas Buechner
- Department of Otolaryngology, Medical University of Hannover, Hanover, Germany
- Hearing4all, Oldenburg, Germany
| |
Collapse
|
9
|
Nogueira W, Boghdady NE, Langner F, Gaudrain E, Başkent D. Effect of Channel Interaction on Vocal Cue Perception in Cochlear Implant Users. Trends Hear 2021; 25:23312165211030166. [PMID: 34461780 PMCID: PMC8411629 DOI: 10.1177/23312165211030166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Speech intelligibility in multitalker settings is challenging for most cochlear implant (CI) users. One possibility for this limitation is the suboptimal representation of vocal cues in implant processing, such as the fundamental frequency (F0), and the vocal tract length (VTL). Previous studies suggested that while F0 perception depends on spectrotemporal cues, VTL perception relies largely on spectral cues. To investigate how spectral smearing in CIs affects vocal cue perception in speech-on-speech (SoS) settings, adjacent electrodes were simultaneously stimulated using current steering in 12 Advanced Bionics users to simulate channel interaction. In current steering, two adjacent electrodes are simultaneously stimulated forming a channel of parallel stimulation. Three such stimulation patterns were used: Sequential (one current steering channel), Paired (two channels), and Triplet stimulation (three channels). F0 and VTL just-noticeable differences (JNDs; Task 1), in addition to SoS intelligibility (Task 2) and comprehension (Task 3), were measured for each stimulation strategy. In Tasks 2 and 3, four maskers were used: the same female talker, a male voice obtained by manipulating both F0 and VTL (F0+VTL) of the original female speaker, a voice where only F0 was manipulated, and a voice where only VTL was manipulated. JNDs were measured relative to the original voice for the F0, VTL, and F0+VTL manipulations. When spectral smearing was increased from Sequential to Triplet, a significant deterioration in performance was observed for Tasks 1 and 2, with no differences between Sequential and Paired stimulation. Data from Task 3 were inconclusive. These results imply that CI users may tolerate certain amounts of channel interaction without significant reduction in performance on tasks relying on voice perception. This points to possibilities for using parallel stimulation in CIs for reducing power consumption.
Collapse
Affiliation(s)
- Waldo Nogueira
- Department of Otolaryngology, Medical University
Hannover and Cluster of Excellence Hearing4all, Hanover, Germany
| | - Nawal El Boghdady
- Department of Otorhinolaryngology, University Medical
Center Groningen, University of Groningen, Groningen,
Netherlands
- Research School of Behavioral and Cognitive
Neurosciences, University of
Groningen, University of Groningen, Groningen,
Netherlands
| | - Florian Langner
- Department of Otolaryngology, Medical University
Hannover and Cluster of Excellence Hearing4all, Hanover, Germany
| | - Etienne Gaudrain
- Department of Otorhinolaryngology, University Medical
Center Groningen, University of Groningen, Groningen,
Netherlands
- Research School of Behavioral and Cognitive
Neurosciences, University of
Groningen, University of Groningen, Groningen,
Netherlands
- Lyon Neuroscience Research Center, CNRS UMR 5292,
INSERM U1028, University Lyon 1, Lyon, France
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical
Center Groningen, University of Groningen, Groningen,
Netherlands
- Research School of Behavioral and Cognitive
Neurosciences, University of
Groningen, University of Groningen, Groningen,
Netherlands
| |
Collapse
|
10
|
Langner F, McKay CM, Büchner A, Nogueira W. Perception and prediction of loudness in sound coding strategies using simultaneous electric stimulation. Hear Res 2020; 398:108091. [PMID: 33059310 DOI: 10.1016/j.heares.2020.108091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Cochlear Implant (CI) sound coding strategies based on simultaneous stimulation lead to an increased loudness percept when compared to sequential stimulation using the same current levels. This is due to loudness summation as a result of channel interactions. Studying the loudness perception evoked by dual-channels compared to single-channels can be useful to optimize sound coding strategies that use simultaneous current pulses. Fourteen users of HiRes90k implants and one user of a CII implant loudness balanced single-channel to dual-channel stimuli with varying distance between simultaneous channels. In this study each component of a dual channel was a virtual channel, which shared current across two adjacent electrodes. Balancing was performed at threshold and comfortable level, for two spatial references (apical and basal) and for dual-channels with different relative current ratios. Increasing distance between dual-channels decreased the amount of current compensation in the dual-channel required to reach equal loudness to a single channel component by an average of 0.24 dB / mm without a significant difference between threshold and most comfortable level. If the components of the dual-channels were not at equal loudness, the loudness summation was reduced with respect to the equal loudness case. The results were incorporated into an existing loudness model by McKay et al. (2003). The predictions from the adapted model were evaluated by comparing the loudness evoked by simultaneous and sequential sound coding strategies. The application of the adapted model resulted in a deviation between predicted and actual behavioral loudness balancing adjustments in electrical level between simultaneous and sequential processing strategies of 0.24 dB on average.
Collapse
Affiliation(s)
- Florian Langner
- Department of Otolaryngology, Medical University Hannover and Cluster of Excellence Hearing4all, Karl-Wiechert-Allee 3, Hannover 30625, Germany.
| | - Colette M McKay
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, Australia
| | - Andreas Büchner
- Department of Otolaryngology, Medical University Hannover and Cluster of Excellence Hearing4all, Karl-Wiechert-Allee 3, Hannover 30625, Germany
| | - Waldo Nogueira
- Department of Otolaryngology, Medical University Hannover and Cluster of Excellence Hearing4all, Karl-Wiechert-Allee 3, Hannover 30625, Germany
| |
Collapse
|
11
|
Goehring T, Arenberg JG, Carlyon RP. Using Spectral Blurring to Assess Effects of Channel Interaction on Speech-in-Noise Perception with Cochlear Implants. J Assoc Res Otolaryngol 2020; 21:353-371. [PMID: 32519088 PMCID: PMC7445227 DOI: 10.1007/s10162-020-00758-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 01/07/2023] Open
Abstract
Cochlear implant (CI) listeners struggle to understand speech in background noise. Interactions between electrode channels due to current spread increase the masking of speech by noise and lead to difficulties with speech perception. Strategies that reduce channel interaction therefore have the potential to improve speech-in-noise perception by CI listeners, but previous results have been mixed. We investigated the effects of channel interaction on speech-in-noise perception and its association with spectro-temporal acuity in a listening study with 12 experienced CI users. Instead of attempting to reduce channel interaction, we introduced spectral blurring to simulate some of the effects of channel interaction by adjusting the overlap between electrode channels at the input level of the analysis filters or at the output by using several simultaneously stimulated electrodes per channel. We measured speech reception thresholds in noise as a function of the amount of blurring applied to either all 15 electrode channels or to 5 evenly spaced channels. Performance remained roughly constant as the amount of blurring applied to all channels increased up to some knee point, above which it deteriorated. This knee point differed across listeners in a way that correlated with performance on a non-speech spectro-temporal task, and is proposed here as an individual measure of channel interaction. Surprisingly, even extreme amounts of blurring applied to 5 channels did not affect performance. The effects on speech perception in noise were similar for blurring at the input and at the output of the CI. The results are in line with the assumption that experienced CI users can make use of a limited number of effective channels of information and tolerate some deviations from their everyday settings when identifying speech in the presence of a masker. Furthermore, these findings may explain the mixed results by strategies that optimized or deactivated a small number of electrodes evenly distributed along the array by showing that blurring or deactivating one-third of the electrodes did not harm speech-in-noise performance.
Collapse
Affiliation(s)
- Tobias Goehring
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Julie G Arenberg
- Massachusetts Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA
| | - Robert P Carlyon
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
12
|
Lamping W, Goehring T, Marozeau J, Carlyon RP. The effect of a coding strategy that removes temporally masked pulses on speech perception by cochlear implant users. Hear Res 2020; 391:107969. [PMID: 32320925 PMCID: PMC7116331 DOI: 10.1016/j.heares.2020.107969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 01/11/2023]
Abstract
Speech recognition in noisy environments remains a challenge for cochlear implant (CI) recipients. Unwanted charge interactions between current pulses, both within and between electrode channels, are likely to impair performance. Here we investigate the effect of reducing the number of current pulses on speech perception. This was achieved by implementing a psychoacoustic temporal-masking model where current pulses in each channel were passed through a temporal integrator to identify and remove pulses that were less likely to be perceived by the recipient. The decision criterion of the temporal integrator was varied to control the percentage of pulses removed in each condition. In experiment 1, speech in quiet was processed with a standard Continuous Interleaved Sampling (CIS) strategy and with 25, 50 and 75% of pulses removed. In experiment 2, performance was measured for speech in noise with the CIS reference and with 50 and 75% of pulses removed. Speech intelligibility in quiet revealed no significant difference between reference and test conditions. For speech in noise, results showed a significant improvement of 2.4 dB when removing 50% of pulses and performance was not significantly different between the reference and when 75% of pulses were removed. Further, by reducing the overall amount of current pulses by 25, 50, and 75% but accounting for the increase in charge necessary to compensate for the decrease in loudness, estimated average power savings of 21.15, 40.95, and 63.45%, respectively, could be possible for this set of listeners. In conclusion, removing temporally masked pulses may improve speech perception in noise and result in substantial power savings.
Collapse
Affiliation(s)
- Wiebke Lamping
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.
| | - Tobias Goehring
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Jeremy Marozeau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| |
Collapse
|
13
|
Abstract
OBJECTIVES In an attempt to improve spectral resolution and speech intelligibility, several current focusing methods have been proposed to increase spatial selectivity by decreasing intracochlear current spread. For example, tripolar stimulation administers current to a central electrode and uses the two flanking electrodes as the return pathway, creating a narrower intracochlear electrical field and hence increases spectral resolution when compared with monopolar (MP) stimulation. However, more current is required, and in some patients, specifically the ones with high electrode impedances, full loudness growth cannot be supported because of compliance limits. The present study describes and analyses a new loudness encoding approach that uses tripolar stimulation near threshold and gradually broadens the excitation (by decreasing compensation coefficient σ) to increase loudness without the need to increase overall current. It is hypothesized that this dynamic current focusing (DCF) strategy increases spatial selectivity, especially at lower loudness levels, while maintaining maximum selectivity at higher loudness levels, without reaching compliance limits. DESIGN Eleven adult cochlear implant recipients with postlingual hearing loss, with at least 9 months of experience with their HiRes90K implant, were selected to participate in this study. Baseline performance regarding speech intelligibility in noise (Dutch matrix sentence test), spectral ripple discrimination at 45 and 65 dB, and temporal modulation detection thresholds were assessed using their own clinical program, fitted on a Harmony processor. Subsequently, the DCF strategy was fitted on a research Harmony processor. Threshold levels were determined with σ = 0.8, which means 80% of current is returned to the flanking electrodes and the remaining 20% to the extracochlear ground electrode. Instead of increasing overall pulse magnitude, σ was decreased to determine most comfortable loudness. After 2 to 3 hr of adaptation to the research strategy, the same psychophysical measures were taken. RESULTS At 45 dB, average spectral ripple scores improved significantly from 2.4 ripples per octave with their clinical program to 3.74 ripples per octave with the DCF strategy (p = 0.016). Eight out of 11 participants had an improved spectral resolution at 65 dB. Nevertheless, no significant difference between DCF and MP was observed at higher presentation levels. Both speech-in-noise and temporal modulation detection thresholds were equal for MP and DCF strategies. Subjectively, 2 participants preferred the DCF strategy over their own clinical program, 2 preferred their own strategy, while the majority of the participants had no preference. Battery life was decreased and ranged from 1.5 to 4 hr. CONCLUSIONS The DCF strategy gives better spectral resolution, at lower loudness levels, but equal performance on speech tests. These outcomes warrant for a longer adaptation period to study long-term outcomes and evaluate if the outcomes in the ripple tests transfer to the speech scores. Further research, for example, with respect to fitting rules and reduction of power consumption, is necessary to make the DCF strategy suitable for routine clinical application.
Collapse
|
14
|
The effect of presentation level on spectrotemporal modulation detection. Hear Res 2018; 371:11-18. [PMID: 30439570 DOI: 10.1016/j.heares.2018.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022]
Abstract
The understanding of speech in noise relies (at least partially) on spectrotemporal modulation sensitivity. This sensitivity can be measured by spectral ripple tests, which can be administered at different presentation levels. However, it is not known how presentation level affects spectrotemporal modulation thresholds. In this work, we present behavioral data for normal-hearing adults which show that at higher ripple densities (2 and 4 ripples/oct), increasing presentation level led to worse discrimination thresholds. Results of a computational model suggested that the higher thresholds could be explained by a worsening of the spectrotemporal representation in the auditory nerve due to broadening of cochlear filters and neural activity saturation. Our results demonstrate the importance of taking presentation level into account when administering spectrotemporal modulation detection tests.
Collapse
|
15
|
Comparison of the Spectral-Temporally Modulated Ripple Test With the Arizona Biomedical Institute Sentence Test in Cochlear Implant Users. Ear Hear 2018; 38:760-766. [PMID: 28957975 DOI: 10.1097/aud.0000000000000496] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Although speech perception is the gold standard for measuring cochlear implant (CI) users' performance, speech perception tests often require extensive adaptation to obtain accurate results, particularly after large changes in maps. Spectral ripple tests, which measure spectral resolution, are an alternate measure that has been shown to correlate with speech perception. A modified spectral ripple test, the spectral-temporally modulated ripple test (SMRT) has recently been developed, and the objective of this study was to compare speech perception and performance on the SMRT for a heterogeneous population of unilateral CI users, bilateral CI users, and bimodal users. DESIGN Twenty-five CI users (eight using unilateral CIs, nine using bilateral CIs, and eight using a CI and a hearing aid) were tested on the Arizona Biomedical Institute Sentence Test (AzBio) with a +8 dB signal to noise ratio, and on the SMRT. All participants were tested with their clinical programs. RESULTS There was a significant correlation between SMRT and AzBio performance. After a practice block, an improvement of one ripple per octave for SMRT corresponded to an improvement of 12.1% for AzBio. Additionally, there was no significant difference in slope or intercept between any of the CI populations. CONCLUSION The results indicate that performance on the SMRT correlates with speech recognition in noise when measured across unilateral, bilateral, and bimodal CI populations. These results suggest that SMRT scores are strongly associated with speech recognition in noise ability in experienced CI users. Further studies should focus on increasing both the size and diversity of the tested participants, and on determining whether the SMRT technique can be used for early predictions of long-term speech scores, or for evaluating differences among different stimulation strategies or parameter settings.
Collapse
|
16
|
Xu Y, Luo C, You Z. Optimization of cochlear implant stimulation resolution using an intracochlear electric potential model. Comput Biol Med 2018; 94:99-105. [PMID: 29408002 DOI: 10.1016/j.compbiomed.2017.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
Designing an electrode array with a high stimulation resolution (SR) is the main challenge in cochlear implant development. In this work, a thin-film electrode array (TFEA) and partial tripolar (pTP) mode were combined in the design stage to optimize the SR. A finite-element model of the intracochlear electric potential Ve incorporating a TFEA and pTP mode was built and validated using previous experimental measurements. Based on this model, the SR was analyzed by using a defined stimulation factor Vs, which takes both the amplitude and bandwidth of Ve into account. A co-simulation method integrating the model and genetic algorithm was employed to maximize Vs with an optimized parameter set including the electrode diameter d, electrode interval g, and compensation coefficient σ. The results indicated that a TFEA combined with pTP mode outperforms their individual utilization to improve the SR and that d has an independent negative correlation with the SR, but it is more effective and feasible to consider all three parameters in the design stage with the proposed model and co-simulation optimization method. In our design, the optimized parameters were d = 150 μm, g = 200.5 μm, and σ = 0.746.
Collapse
Affiliation(s)
- Yuchen Xu
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100083, China; Department of Precision Instrument, Tsinghua University, Beijing 100083, China; Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing 100083, China
| | - Chuan Luo
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100083, China; Department of Precision Instrument, Tsinghua University, Beijing 100083, China; Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing 100083, China.
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100083, China; Department of Precision Instrument, Tsinghua University, Beijing 100083, China; Beijing Laboratory for Biomedical Detection Technology and Instrument, Tsinghua University, Beijing 100083, China.
| |
Collapse
|