1
|
Hamra M, Tetin-Schneider S, Shinnawi S, Cohen Vaizer M, Yelin D. Measuring the Acoustic Reflex through the Tympanic Membrane. Audiol Neurootol 2024; 29:438-449. [PMID: 38574477 DOI: 10.1159/000538703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION The acoustic reflex is the active response of the middle ear to loud sounds, altering the mechanical transfer function of the acoustic energy into the inner ear. Our goal was to observe the effect of the acoustic reflex on the tympanic membrane by identifying a significant nonlinear increase in membrane oscillations. METHODS By using interferometric spectrally encoded endoscopy, we record the membrane oscillations over time in response to a loud, 200-ms-long acoustic stimulus. RESULTS A gradual reflex activation is measured between approximately 40 and 100 ms, manifested as a linear 42% increase in the umbo oscillation amplitude. CONCLUSION The measured oscillations correlate well with those expected from a mechanical model of a damped harmonic oscillator, and the results of this work demonstrate the potential of interferometric spectrally encoded endoscopy to observe unique dynamical processes in the tympanic membrane and in the middle ear.
Collapse
Affiliation(s)
- Matan Hamra
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Shadi Shinnawi
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Haifa, Israel
| | - Mauricio Cohen Vaizer
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Haifa, Israel
| | - Dvir Yelin
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Brokaw EB, S Brungart D, M Byrne R, A Flamme G, Gupta R, Jokel CR, Kujawa SG, Lalis L, L McKinley R, Murphy WJ, W Spencer R, J Smalt C, F Zagadou B. Recommendations for a Military Health System Auditory Blast Injury Prevention Standard. Mil Med 2023; 188:176-184. [PMID: 37948248 DOI: 10.1093/milmed/usad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Although existing auditory injury prevention standards benefit warfighters, the Department of Defense could do more to understand and address auditory injuries (e.g., hearing loss, tinnitus, and central processing deficits) among service members. The Blast Injury Prevention Standards Recommendation (BIPSR) Process is designed to address the needs of all the Military Services for biomedically valid Military Health System (MHS) Blast Injury Prevention Standards. MATERIALS AND METHODS Through the BIPSR Process, stakeholders provided their intended uses and requested functionalities for an MHS Blast Injury Prevention Standard. The BIPSR Process established a broad-based, non-advocacy panel of auditory injury Subject Matter Expert (SME) Panel with members drawn from industry, academia, and government. The SME Panel selected evaluation factors, weighted priorities, and then evaluated the resulting candidate MHS Auditory Blast Injury Prevention Standards against the evaluation criteria. The SME Panel members provided rationales for their decisions, documented discussions, and used iterative rounds of feedback to promote consensus building among members. The BIPSR Process used multi-attribute utility theory to combine members' evaluations and compare the candidate standards. RESULTS The SME Panel identified and collated information about existing auditory injury datasets to identify gaps and promote data sharing and comprehensive evaluations of standards for preventing auditory blast injury. The panel evaluated the candidate standards and developed recommendations for an MHS Blast Injury Prevention Standard. CONCLUSIONS The BIPSR Process illuminated important characteristics, capabilities, and limitations of candidate standards and existing datasets (e.g., limited human exposure data to evaluate the validity of injury prediction) for auditory blast injury prevention. The evaluation resulted in the recommendation to use the 8-hour Equivalent Level (LAeq8hr) as the interim MHS Auditory Blast Injury Prevention Standard while the community performs additional research to fill critical knowledge gaps.
Collapse
Affiliation(s)
| | | | | | - Greg A Flamme
- Stephenson and Stephenson Research and Consulting, LLC, Forest Grove, OR 97116, USA
| | - Raj Gupta
- U.S. Army Medical Research and Development Command, Frederick, MD 21702-501, USA
| | - Charles R Jokel
- Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, MD 21010-5403, USA
| | | | - Lisa Lalis
- The MITRE Corporation, McLean, VA 22102, USA
| | | | - William J Murphy
- Stephenson and Stephenson Research and Consulting, LLC, Forest Grove, OR 97116, USA
| | | | - Christopher J Smalt
- Massachusetts Institute of Technology Lincoln Laboratory, 244 Wood St, Lexington, Massachusetts 02421, USA
| | | |
Collapse
|
3
|
Occluded insertion loss from intracochlear pressure measurements during acoustic shock wave exposure. Hear Res 2023; 428:108669. [PMID: 36565603 DOI: 10.1016/j.heares.2022.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Injuries to the peripheral auditory system are among the most common results of high intensity impulsive noise exposure. Hearing protection can mitigate this injury, but careful assessment of the insertion loss they provide is necessary. Insertion loss is typically measured using microphone-based acoustic manikins to measure the decrease in sound pressure level transmitted into the ear canal, which precisely measure the change in air conducted sound, but neglect alternate pathways to the inner ear such as bone conduction. In a previous study we reported intracochlear pressures in cadaveric human specimens to acoustic shock waves, which revealed a substantial bone conducted component (Greene, et al., 2018). Here we evaluate insertion loss to several hearing protection devices (HPDs) in those same specimens using intracochlear pressure measurements. METHODS Human cadaver heads were exposed to impulsive acoustic pressure waves with peak overpressures of 7 and 28 kPa (171 & 183 dB SPL). Ear canal (EAC), middle ear, and intracochlear sound pressure levels were measured bilaterally with fiber-optic pressure sensors. Surface-mounted sensors measured SPL and skull strain near the opening of each EAC and at the forehead. Responses were measured with specimen ears unoccluded, as reported previously, as well as fitted with four types of HPDs. Impulse peak insertion loss (IPIL) and impulse spectrum insertion loss (ISIL) were calculated for each HPD. RESULTS For all HPDs, IPIL generally increases with exposure level, though ISIL tended to be more consistent, and the spectral characteristics across frequency appear to be highly dependent on exposure level. ISIL measured in the ear canal tended to overestimate insertion loss measured in the cochlea, particularly at frequencies > 1 kHz; however, low signal-to-noise in intracochlear pressures limited comparisons. As a proof of concept, 36 low-level unoccluded exposures, were averaged together, and the resulting signal-to-noise ratio was improved by up to 15 dB. CONCLUSIONS Insertion loss measured in the cochlea was lower than in the ear canal, suggesting substantial contributions from transmission pathways in parallel with air conduction (e.g., bone conduction) were present, which will require novel strategies to mitigate. However, high variance was observed, and noise reduction strategies should be utilized in future studies to facilitate more precise insertion loss estimates.
Collapse
|
4
|
von Benda-Beckmann AM, Ketten DR, Lam FPA, de Jong CAF, Müller RAJ, Kastelein RA. Evaluation of kurtosis-corrected sound exposure level as a metric for predicting onset of hearing threshold shifts in harbor porpoises (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:295. [PMID: 35931542 DOI: 10.1121/10.0012364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Application of a kurtosis correction to frequency-weighted sound exposure level (SEL) improved predictions of risk of hearing damage in humans and terrestrial mammals for sound exposures with different degrees of impulsiveness. To assess whether kurtosis corrections may lead to improved predictions for marine mammals, corrections were applied to temporary threshold shift (TTS) growth measurements for harbor porpoises (Phocoena phocoena) exposed to different sounds. Kurtosis-corrected frequency-weighted SEL predicted accurately the growth of low levels of TTS (TTS1-4 < 10 dB) for intermittent sounds with short (1-13 s) silence intervals but was not consistent with frequency-weighted SEL data for continuous sound exposures.
Collapse
Affiliation(s)
| | - D R Ketten
- The Hearing Research Center, Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02155, USA
| | - F P A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - C A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - R A J Müller
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - R A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
5
|
Swallow J, Fedele E, Sallis-Peterson F. Modeling Injury Risk From Multiple-Impulse, Area-Distributed Flash-bangs Using an Uncertainty Bounding Approach to Dose Accumulation. Mil Med 2022; 188:usac083. [PMID: 35451004 DOI: 10.1093/milmed/usac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Modeling of injury risk from nonlethal weapons including flash-bangs is a critical step in the design, acquisition, and application of such devices for military purposes. One flash-bang design concept currently being developed involves multiple, area-distributed flash-bangs. It is particularly difficult to model the variation inherent in operational settings employing such devices due to the randomness of flash-bang detonation positioning relative to targets. The problem is exacerbated by uncertainty related to changes in the mechanical properties of auditory system tissues and contraction of muscles in the middle ear (the acoustic reflex), which can both immediately follow impulse-noise exposure. In this article, we demonstrate a methodology to quantify uncertainty in injury risk estimation related to exposure to multiple area-distributed flash-bang impulses in short periods of time and analyze the effects of factors such as the number of impulses, their spatial distribution, and the uncertainties in their parameters on estimated injury risk. MATERIALS AND METHODS We conducted Monte Carlo simulations of dispersion and timing of a mortar-and-submunition flash-bang device that distributes submunitions over an area, using the Auditory 4.5 model developed by L3 Applied Technologies to estimate the risk of hearing loss (permanent threshold shift) in an exposure area. We bound injury risk estimates by applying limiting assumptions for dose accumulation rules applied to short inter-pulse intervals and varied impulse-noise-intensity exposure characteristic of multi-impulse flash-bangs. The upper bound of risk assumes no trading of risk between the number of impulses and intensity of individual impulses, while the lower bound assumes a perfectly protective acoustic reflex. RESULTS In general, the risk to individuals standing in the most hazardous zone of the simulation is quite sensitive to the pattern of submunitions, relative to the sensitivity for those standing farther from that zone. Larger mortar burst radii (distributing submunitions over a wider area) reduce expected peak risk, while increasing the number of submunitions, the intensity of individual impulses, or the uncertainty in impulse intensity increases expected risk. We find that injury risk calculations must factor in device output variation because the injury risk curve in the flash-bang dose regime is asymmetric. We also find that increased numbers of submunitions increase the peak risk in an area more rapidly than scene-averaged risk and that the uncertainty related to dose accumulation in the acoustic reflex regime can be substantial for large numbers of submunitions and should not be ignored. CONCLUSIONS This work provides a methodology for exploring both the role of device parameters and the choice of dose accumulation rule in estimating the risk of significant injury and associated uncertainty for multi-impulse, area-distributed flash-bang exposures. This analysis can inform decisions about the design of flash-bangs and training for their operational usage. The methodology can be extended to other device designs or deployment concepts to generate risk maps and injury risk uncertainty ranges. This work does not account for additional injury types beyond permanent threshold shift that may occur as a result of flash-bang exposure. A useful extension of this work would be similar work connecting design and operational parameters to human effectiveness.
Collapse
Affiliation(s)
- Jessica Swallow
- Science and Technology Division, Institute for Defense Analyses, Alexandria, VA 22305, USA
| | - Emily Fedele
- Science and Technology Division, Institute for Defense Analyses, Alexandria, VA 22305, USA
| | | |
Collapse
|
6
|
Kastelein RA, Helder-Hoek L, Cornelisse SA, von Benda-Beckmann AM, Lam FPA, de Jong CAF, Ketten DR. Lack of reproducibility of temporary hearing threshold shifts in a harbor porpoise after exposure to repeated airgun sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:556. [PMID: 32872990 DOI: 10.1121/10.0001668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Noise-induced temporary hearing threshold shift (TTS) was studied in a harbor porpoise exposed to impulsive sounds of scaled-down airguns while both stationary and free-swimming for up to 90 min. In a previous study, ∼4 dB TTS was elicited in this porpoise, but despite 8 dB higher single-shot and cumulative exposure levels (up to 199 dB re 1 μPa2s) in the present study, the porpoise showed no significant TTS at hearing frequencies 2, 4, or 8 kHz. There were no changes in the study animal's audiogram between the studies or significant differences in the fatiguing sound that could explain the difference, but audible and visual cues in the present study may have allowed the porpoise to predict when the fatiguing sounds would be produced. The discrepancy between the studies may have resulted from self-mitigation by the porpoise. Self-mitigation, resulting in reduced hearing sensitivity, can be achieved via changes in the orientation of the head, or via alteration of the hearing threshold by processes in the ear or central nervous system.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Suzanne A Cornelisse
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | | | - Frans-Peter A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Christ A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Darlene R Ketten
- The Hearing Research Center, Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02155, USA
| |
Collapse
|
7
|
Abstract
The pupil responds reflexively to changes in brightness and focal distance to maintain the smallest pupil (and thus the highest visual acuity) that still allows sufficient light to reach the retina. The pupil also responds to a wide variety of cognitive processes, but the functions of these cognitive responses are still poorly understood. In this review, I propose that cognitive pupil responses, like their reflexive counterparts, serve to optimize vision. Specifically, an emphasis on central vision over peripheral vision results in pupil constriction, and this likely reflects the fact that central vision benefits most from the increased visual acuity provided by small pupils. Furthermore, an intention to act with a bright stimulus results in preparatory pupil constriction, which allows the pupil to respond quickly when that bright stimulus is subsequently brought into view. More generally, cognitively driven pupil responses are likely a form of sensory tuning: a subtle adjustment of the eyes to optimize their properties for the current situation and the immediate future. Expected final online publication date for the Annual Review of Vision Science, Volume 6 is September 15, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sebastiaan Mathôt
- Department of Psychology, University of Groningen, 9712TS Groningen, The Netherlands;
| |
Collapse
|
8
|
Force and Sound Pressure Sensors Used for Modeling the Impact of the Firearm with a Suppressor. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, a mathematical model for projectiles shooting in any direction based on sensors distributed stereoscopically is put forward. It is based on the characteristics of a shock wave around a supersonic projectile and acoustical localization. Wave equations for an acoustic monopole point source of a directed effect used for physical interpretation of pressure as an acoustic phenomenon. Simulation and measurements of novel versatile mechanical and acoustical damping system (silencer), which has both a muzzle break and silencer properties studied in this paper. The use of the proposed damping system can have great influence on the acoustic pressure field intensity from the shooter. A silencer regarded as an acoustic transducer and multi-holes waveguide with a chamber. Wave equations for an acoustic monopole point source of a directed effect used for the physical interpretation of pressure as an acoustic phenomenon. The numerical simulation results of the silencer with different configurations presented allow trends to be established. A measurement chain was used to compare the simulation results with the experimental ones. The modeling and experimental results showed an increase in silencer chamber volume results in a reduction of recorded pressure within the silencer chamber.
Collapse
|
9
|
Deiters KK, Flamme GA, Tasko SM, Murphy WJ, Greene NT, Jones HG, Ahroon WA. Generalizability of clinically measured acoustic reflexes to brief sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3993. [PMID: 31795698 PMCID: PMC7043895 DOI: 10.1121/1.5132705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 05/08/2023]
Abstract
Middle ear muscle contractions (MEMC) can be elicited in response to high-level sounds, and have been used clinically as acoustic reflexes (ARs) during evaluations of auditory system integrity. The results of clinical AR evaluations do not necessarily generalize to different signal types or durations. The purpose of this study was to evaluate the likelihood of observing MEMC in response to brief sound stimuli (tones, recorded gunshots, noise) in adult participants (N = 190) exhibiting clinical ARs and excellent hearing sensitivity. Results revealed that the presence of clinical ARs was not a sufficient indication that listeners will also exhibit MEMC for brief sounds. Detection rates varied across stimulus types between approximately 20% and 80%. Probabilities of observing MEMC also differed by clinical AR magnitude and latency, and declined over the period of minutes during the course of the MEMC measurement series. These results provide no support for the inclusion of MEMC as a protective factor in damage-risk criteria for impulsive noises, and the limited predictability of whether a given individual will exhibit MEMC in response to a brief sound indicates a need to measure and control for MEMC in studies evaluating pharmaceutical interventions for hearing loss.
Collapse
Affiliation(s)
- Kristy K Deiters
- Stephenson and Stephenson Research and Consulting (SASRAC), Forest Grove, Oregon 97116, USA
| | - Gregory A Flamme
- Stephenson and Stephenson Research and Consulting (SASRAC), Forest Grove, Oregon 97116, USA
| | - Stephen M Tasko
- Stephenson and Stephenson Research and Consulting (SASRAC), Forest Grove, Oregon 97116, USA
| | - William J Murphy
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio 45226, USA
| | - Nathaniel T Greene
- United States (U.S.) Army Aeromedical Research Lab (USAARL), Fort Rucker, Alabama 36362, USA
| | - Heath G Jones
- United States (U.S.) Army Aeromedical Research Lab (USAARL), Fort Rucker, Alabama 36362, USA
| | - William A Ahroon
- United States (U.S.) Army Aeromedical Research Lab (USAARL), Fort Rucker, Alabama 36362, USA
| |
Collapse
|