1
|
Mohan P, Sinkkonen ST, Sivonen V. The association of intraoperative electric field and neural excitation patterns of the cochlear implant with patient-related factors of age, gender, cochlear diameter, and postoperative speech measures. Hear Res 2024; 453:109131. [PMID: 39454419 DOI: 10.1016/j.heares.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE To assess the relationships between the electric field (EF) and neural excitation patterns in cochlear implants (CIs) and explore their associations with the cochlear diameter, patient age and gender, and postoperative speech recognition. METHOD The intraoperative transimpedance matrix (TIM) and spread of excitation (SOE) measures were computed to obtain their 50 % widths corresponding to six electrode contacts of a lateral-wall electrode array. The measures were then analyzed for intercorrelations, associations with the cochlear diameter, as well as age and gender-related differences. The relationships between the computed intraoperative measures and postimplant speech recognition were also studied. RESULTS The TIM and SOE 50 % widths present moderate correlations and exhibit differences between adults and children. The TIM 50 % widths show additional associations with the cochlear diameter and partly vary with the implantee's gender. Speech recognition was found to have a significant relationship with the exponential spread coefficients (ESCs) obtained for individual electrode contacts. CONCLUSION Although interrelated, the EF and neural excitation measures of the CI are associated with different variables. The ESC, derived from computations of the TIM, is the only measure linked to postoperative speech recognition.
Collapse
Affiliation(s)
- Priyanka Mohan
- Department of Otorhinolaryngology-Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Saku T Sinkkonen
- Department of Otorhinolaryngology-Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ville Sivonen
- Department of Otorhinolaryngology-Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Alzhrani F, Aljazeeri I, Abdelsamad Y, Alsanosi A, Kim AH, Ramos-Macias A, Ramos-de-Miguel A, Kurz A, Lorens A, Gantz B, Buchman CA, Távora-Vieira D, Sprinzl G, Mertens G, Saunders JE, Kosaner J, Telmesani LM, Lassaletta L, Bance M, Yousef M, Holcomb MA, Adunka O, Thomasen PC, Skarzynski PH, Rajeswaran R, Briggs RJ, Oh SH, Plontke S, O’Leary SJ, Agrawal S, Yamasoba T, Lenarz T, Wesarg T, Kutz W, Connolly P, Anderson I, Hagr A. International Consensus Statements on Intraoperative Testing for Cochlear Implantation Surgery. Ear Hear 2024; 45:1418-1426. [PMID: 38915137 PMCID: PMC11487033 DOI: 10.1097/aud.0000000000001526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/29/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVES A wide variety of intraoperative tests are available in cochlear implantation. However, no consensus exists on which tests constitute the minimum necessary battery. We assembled an international panel of clinical experts to develop, refine, and vote upon a set of core consensus statements. DESIGN A literature review was used to identify intraoperative tests currently used in the field and draft a set of provisional statements. For statement evaluation and refinement, we used a modified Delphi consensus panel structure. Multiple interactive rounds of voting, evaluation, and feedback were conducted to achieve convergence. RESULTS Twenty-nine provisional statements were included in the original draft. In the first voting round, consensus was reached on 15 statements. Of the 14 statements that did not reach consensus, 12 were revised based on feedback provided by the expert practitioners, and 2 were eliminated. In the second voting round, 10 of the 12 revised statements reached a consensus. The two statements which did not achieve consensus were further revised and subjected to a third voting round. However, both statements failed to achieve consensus in the third round. In addition, during the final revision, one more statement was decided to be deleted due to overlap with another modified statement. CONCLUSIONS A final core set of 24 consensus statements was generated, covering wide areas of intraoperative testing during CI surgery. These statements may provide utility as evidence-based guidelines to improve quality and achieve uniformity of surgical practice.
Collapse
Affiliation(s)
- Farid Alzhrani
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Isra Aljazeeri
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Aljaber Ophthalmology and Otolaryngology Specialized Hospital, Ministry of Health, Ahsa, Saudi Arabia
- Isra Aljazeeri shared first author
| | - Yassin Abdelsamad
- Research Department, Research Department, MED-EL GmbH, Riyadh, Saudi Arabia
| | - Abdulrahman Alsanosi
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Ana H. Kim
- Columbia University Medical Center, New York, New York, USA
| | - Angel Ramos-Macias
- Department of Otolaryngology and Head and Neck Surgery, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Angel Ramos-de-Miguel
- Department of Otolaryngology and Head and Neck Surgery, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Anja Kurz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, Würzburg, Germany
| | - Artur Lorens
- Word Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - Bruce Gantz
- Department of Otolaryngology—Head and Neck Surgery/Neurosurgery, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, Iowa, USA
| | - Craig A. Buchman
- Department of Otolaryngology-Head & Neck Surgery, Washington University in St. Louis, St. Louis, MO
| | - Dayse Távora-Vieira
- Division of Surgery, Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Audiology, Fiona Stanley Fremantle Hospitals Group, Perth, Western Australia, Australia
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Georg Sprinzl
- Department of Otorhinolaryngology, Karl Landsteiner University of Health Sciences, University Hospital St. Poelten, St. Poelten, Austria
| | - Griet Mertens
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, Experimental Laboratory of Translational Neurosciences and Dento-Otolaryngology, University of Antwerp, Antwerp, Belgium
| | - James E. Saunders
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, New Hampshire, USA
| | - Julie Kosaner
- Meders Speech and Hearing Clinic, Meders İşitme ve Konuşma Merkezi, İstanbul, Turkey
| | - Laila M. Telmesani
- Department of Otolaryngology/Head and Neck Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Luis Lassaletta
- Department of Otorhinolaryngology, Hospital La Paz, IdiPAZ Research Institute, Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases, Institute of Health Carlos III, Madrid, Spain
| | - Manohar Bance
- Department of Otolaryngology-Head and Neck Surgery, Addenbrooke’s Hospital, University of Cambridge, United Kingdom
| | - Medhat Yousef
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Audiology Unit, ENT Department, Menoufia University, Menoufia, Egypt
| | - Meredith A. Holcomb
- Hearing Implant Program, Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - Oliver Adunka
- Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Per Cayé- Thomasen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Denmark
| | - Piotr H. Skarzynski
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
- Faculty of Dental Medicine, Heart Failure and Cardiac Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland
- Institute of Sensory Organs, Nadarzyn/Kajetany, Poland
- Center of Hearing and Speech “Medincus,” Nadarzyn/Kajetany, Poland
| | - Ranjith Rajeswaran
- Madras ENT Research Foundation MERF Institute of Speech and Hearing, Chennai, India
| | - Robert J. Briggs
- Department of Surgery, Otolaryngology, The University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Seung-Ha Oh
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Stefan Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery; Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephen J. O’Leary
- Department of Surgery, Otolaryngology, The University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Tatsuya Yamasoba
- Tokyo Teishin Hospital, Tokyo, Japan
- Department of Otolaryngology and Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hanover, Germany
| | - Thomas Wesarg
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Walter Kutz
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ilona Anderson
- Clinical Research Department, MED-EL GmbH, Innsbruck, Austria
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Cottrell J, Winchester A, Friedmann D, Jethanamest D, Spitzer E, Svirsky M, Waltzman SB, Shapiro WH, McMenomey S, Roland JT. Characterizing Cochlear Implant Trans-Impedance Matrix Heatmaps in Patients With Abnormal Anatomy. Otol Neurotol 2024; 45:e630-e638. [PMID: 39190800 DOI: 10.1097/mao.0000000000004304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
OBJECTIVE To characterize transimpedance matrix (TIM) heatmap patterns in patients at risk of labyrinthine abnormality to better understand accuracy and possible TIM limitations. STUDY DESIGN Retrospective review of TIM patterns, preoperative, and postoperative imaging. SETTING Tertiary referral center. PATIENTS Patients undergoing cochlear implantation with risk of labyrinthine abnormality. INTERVENTION None. RESULTS Seventy-seven patients were evaluated. Twenty-five percent (n = 19) of patients had a TIM pattern variant identified. These variants were separated into 10 novel categories. Overall, 9% (n = 6) of electrodes were malpositioned on intraoperative x-ray, of which 50% (n = 3) were underinserted, 17% (n = 1) were overinserted, 17% (n = 1) had a tip foldover, and 17% (n = 1) had a coiled electrode. The number of patients with a variant TIM pattern and normal x-ray was 18% (n = 14), and the number of patients with normal TIM pattern and malposition noted on x-ray was 3% (n = 2; both were electrode underinsertions that were recognized due to open circuits and surgical visualization).A newly defined skip heat pattern was identified in patients with IP2/Mondini malformation and interscalar septum width <0.5 mm at the cochlear pars ascendens of the basal turn. CONCLUSIONS This study defines novel patterns for TIM heatmap characterization to facilitate collaborative and comparative research moving forward. In doing so, it highlights a new pattern termed skip heat, which corresponds with a deficient interscalar septum of the cochlea pars ascendens of the basal turn in patients with IP2 malformation. Overall, the data assist the surgeon in better understanding the implications and limitations of TIM patterns within groups of patients with risk of labyrinthine abnormalities.
Collapse
Affiliation(s)
- Justin Cottrell
- Department of Otolaryngology-Head and Neck Surgery, NYU Langone, New York, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Marx M, Laborde ML, Algans C, Tartayre M, James CJ. Barriers to Early Progress in Adult Cochlear Implant Outcomes. Ear Hear 2024:00003446-990000000-00329. [PMID: 39129126 DOI: 10.1097/aud.0000000000001559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
OBJECTIVES Adult cochlear implant (CI) recipients obtain varying levels of speech perception from their device. Adult CI users adapt quickly to their CI if they have no peripheral "bottom-up" or neurocognitive "top-down" limiting factors. Our objective here was to understand the influence of limiting factors on the progression of sentence understanding in quiet and in noise, initially and over time. We hypothesized that the presence of limiting factors, detected using a short test battery, would predictably influence sentence recognition with practical consequences. We aimed to validate the test battery by comparing the presence of limiting factors and the success criteria of >90% sentence understanding in quiet 1 month after activation. DESIGN The study was a single-clinic, cross-sectional, retrospective design incorporating 32 adult unilateral Nucleus CI users aged 27 to 90 years (mean = 70, SD = 13.5). Postoperative outcome was assessed through sentence recognition scores in quiet and in varying signal to noise ratios at 1 day, 1 to 2 months, and up to 2 years. Our clinic's standard test battery comprises physiological and neurocognitive measures. Physiological measures included electrically evoked compound action potentials for recovery function, spread of excitation, and polarity effect. To evaluate general cognitive function, inhibition, and phonological awareness, the Montreal Cognitive Assessment screening test, the Stroop Color-Word Test, and tests 3 and 4 of the French Assessment of Reading Skills in Adults over 16 years of age, respectively were performed. Physiological scores were considered abnormal, and therefore limiting, when total neural recovery periods and polarity effects, for both apical and basal electrode positions, were >1.65 SDs from the population mean. A spread of excitation of >6 electrode units was also considered limiting. For the neurocognitive tests, scores poorer than 1.65 SDs from published normal population means were considered limiting. RESULTS At 1 month, 13 out of 32 CI users scored ≥90% sentence recognition in quiet with no significant dependence on age. Subjects with no limiting peripheral or neurocognitive factors were 8.5 times more likely to achieve ≥90% score in quiet at 1 month after CI switch-on (p = 0.010). In our sample, we detected 4 out of 32 cases with peripheral limiting factors that related to neural health or poor electrode-neural interface at both apical and basal positions. In contrast, neurocognitive limiting factors were identified in 14 out of 32 subjects. Early sentence recognition scores were predictive of long-term sentence recognition thresholds in noise such that limiting factors appeared to be of continuous influence. CONCLUSIONS Both peripheral and neurocognitive processing factors affect early sentence recognition after CI activation. Peripheral limiting factors may have been detected less often than neurocognitive limiting factors because they were defined using sample-based criteria versus normal population-based criteria. Early performance was generally predictive of long-term performance. Understanding the measurable covariables that limit CI performance may inform follow-up and improve counseling. A score of ≥90% for sentence recognition in quiet at 1 month may be used to define successful progress; whereas, lower scores indicate the need for diagnostic testing and ongoing rehabilitation. Our findings suggest that sentence test scores as early as 1 day after activation can provide vital information for the new CI user and indicate the need for rehabilitation follow-up.
Collapse
Affiliation(s)
- Mathieu Marx
- Service Oto Rhino Laryngologie Hôpital Riquet, Toulouse, France
| | | | - Carol Algans
- Service Oto Rhino Laryngologie Hôpital Riquet, Toulouse, France
| | | | | |
Collapse
|
5
|
Callejón-Leblic MA, Lazo-Maestre M, Fratter A, Ropero-Romero F, Sánchez-Gómez S, Reina-Tosina J. A full-head model to investigate intra and extracochlear electric fields in cochlear implant stimulation. Phys Med Biol 2024; 69:155010. [PMID: 38925131 DOI: 10.1088/1361-6560/ad5c38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Objective.Despite the widespread use and technical improvement of cochlear implant (CI) devices over past decades, further research into the bioelectric bases of CI stimulation is still needed. Various stimulation modes implemented by different CI manufacturers coexist, but their true clinical benefit remains unclear, probably due to the high inter-subject variability reported, which makes the prediction of CI outcomes and the optimal fitting of stimulation parameters challenging. A highly detailed full-head model that includes a cochlea and an electrode array is developed in this study to emulate intracochlear voltages and extracochlear current pathways through the head in CI stimulation.Approach.Simulations based on the finite element method were conducted under monopolar, bipolar, tripolar (TP), and partial TP modes, as well as for apical, medial, and basal electrodes. Variables simulated included: intracochlear voltages, electric field (EF) decay, electric potentials at the scalp and extracochlear currents through the head. To better understand CI side effects such as facial nerve stimulation, caused by spurious current leakage out from the cochlea, special emphasis is given to the analysis of the EF over the facial nerve.Main results.The model reasonably predicts EF magnitudes and trends previously reported in CI users. New relevant extracochlear current pathways through the head and brain tissues have been identified. Simulated results also show differences in the magnitude and distribution of the EF through different segments of the facial nerve upon different stimulation modes and electrodes, dependent on nerve and bone tissue conductivities.Significance.Full-head models prove useful tools to model intra and extracochlear EFs in CI stimulation. Our findings could prove useful in the design of future experimental studies to contrast FNS mechanisms upon stimulation of different electrodes and CI modes. The full-head model developed is freely available for the CI community for further research and use.
Collapse
Affiliation(s)
- M A Callejón-Leblic
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
- Oticon Medical, 28108 Madrid, Spain
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| | - M Lazo-Maestre
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - A Fratter
- Oticon Medical, 06220 Vallauris, France
| | - F Ropero-Romero
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - S Sánchez-Gómez
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - J Reina-Tosina
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| |
Collapse
|
6
|
Zhang L, Schmidt FH, Oberhoffner T, Ehrt K, Cantré D, Großmann W, Schraven SP, Mlynski R. Transimpedance Matrix Can Be Used to Estimate Electrode Positions Intraoperatively and to Monitor Their Positional Changes Postoperatively in Cochlear Implant Patients. Otol Neurotol 2024; 45:e289-e296. [PMID: 38346796 DOI: 10.1097/mao.0000000000004145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Accurate positioning of the electrode array during cochlear implant (CI) surgery is crucial for achieving optimal hearing outcomes. Traditionally, postoperative radiological imaging has been used to assess electrode position. Transimpedance matrix (TIM) measurements have also emerged as a promising method for assessing electrode position. This involves utilizing electric field imaging to create an electric distance matrix by analyzing voltage variations among adjacent electrodes. This study aimed to investigate the feasibility of using intraoperative TIM measurements to estimate electrode position and monitor postoperative changes. STUDY DESIGN Retrospective cohort study. SETTING University Medical center, tertiary academic referral center. PATIENTS Patients undergoing CI (CI622) surgery between January 2019 and June 2022. INTERVENTION CI electrode positions and maximal angular insertion depths (maxAID) were determined using X-ray imaging according to Stenvers' projection. The mean gradient phase (MGP) was extracted from the TIM, and a correlation between the MGP and maxAID was examined. A model was then built to estimate the maxAID using the MGP, and changes in electrode location over time were assessed using this model. MAIN OUTCOME MEASURES Twenty-four patients were included in this study. A positive correlation between the maxAID and the MGP ( R = 0.7, p = 0.0001) was found. The established model was able to predict the maxAID with an accuracy of 27.7 ± 4.4°. Comparing intraoperative and postoperative TIM measurements, a decrease of 24.1° ± 10.7° in maxAID over time was observed. CONCLUSION TIM measurements are useful for estimating the insertion depth of the electrode and monitoring changes in the electrode's position over time.
Collapse
Affiliation(s)
- Lichun Zhang
- Departments of Otorhinolaryngology, Head and Neck Surgery, "Otto Körner,"
| | | | - Tobias Oberhoffner
- Departments of Otorhinolaryngology, Head and Neck Surgery, "Otto Körner,"
| | - Karsten Ehrt
- Departments of Otorhinolaryngology, Head and Neck Surgery, "Otto Körner,"
| | - Daniel Cantré
- Radiology, Rostock University Medical Center, Rostock, Germany
| | - Wilma Großmann
- Departments of Otorhinolaryngology, Head and Neck Surgery, "Otto Körner,"
| | | | - Robert Mlynski
- Departments of Otorhinolaryngology, Head and Neck Surgery, "Otto Körner,"
| |
Collapse
|
7
|
Ayas M, Muzaffar J, Borsetto D, Eitutis S, Phillips V, Tam YC, Salorio-Corbetto M, Bance ML. A scoping review on the clinical effectiveness of Trans-Impedance Matrix (TIM) measurements in detecting extracochlear electrodes and tip fold overs in Cochlear Ltd devices. PLoS One 2024; 19:e0299597. [PMID: 38452034 PMCID: PMC10919746 DOI: 10.1371/journal.pone.0299597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Extrusion of electrodes outside the cochlea and tip fold overs may lead to suboptimal outcomes in cochlear implant (CI) recipients. Intraoperative measures such as Trans-Impedance Matrix (TIM) measurements may enable clinicians to identify electrode malposition and direct surgeons to correctly place the electrode array during surgery. OBJECTIVES To assess the current literature on the effectiveness of TIM measurements in identifying extracochlear electrodes and tip fold overs. METHODS A scoping review of studies on TIM-based measurements were carried out using the Databases-Medline/PubMed, AMED, EMBASE, CINAHL and the Cochrane Library following PRISMA guidelines. Eleven full texts articles met the inclusion criteria. Only human studies pertaining to TIM as a tool used in CI were included in the review. Further, patient characteristics, electrode design, and TIM measurement outcomes were reported. RESULTS TIM measurements were available for 550 implanted ears with the subjects age ranged between 9 months to 89 years. Abnormal TIM measurements were reported for 6.55% (36). Tip fold over was detected in 3.64% (20) of the cases, extracochlear electrodes in 1.45% (8), and 1.45% (8) were reported as buckling. Slim-modiolar electrode array designs were more common (54.71%) than pre-curved (23.34%) or lateral wall (21.95%) electrode array. Abnormal cochlear anatomy was reported for five ears (0.89%), with normal cochlear anatomy for all other patients. CONCLUSION TIM measurement is a promising tool for the intraoperative detection of electrode malposition. TIM measurement has a potential to replace intraoperative imaging in future. Though, TIM measurement is in its early stages of clinical utility, intuitive normative data sets coupled with standardised criteria for detection of abnormal electrode positioning would enhance its sensitivity.
Collapse
Affiliation(s)
- Muhammed Ayas
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
| | - Jameel Muzaffar
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
- Department of Ear, Nose and Throat Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Daniele Borsetto
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Susan Eitutis
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
| | - Veronica Phillips
- Medical Library, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Yu Chuen Tam
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
| | - Marina Salorio-Corbetto
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
| | - Manohar L. Bance
- Cambridge Hearing Group, University of Cambridge, Cambridge, United Kingdom
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
8
|
Kopsch AC, Rahne T, Plontke SK, Wagner L. Influence of the Spread of the Electric Field on Speech Recognition in Cochlear Implant Users. Otol Neurotol 2024; 45:e221-e227. [PMID: 38238910 DOI: 10.1097/mao.0000000000004086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To investigate the correlation of word recognition with cochlear implant (CI) and spread of the electric field. STUDY DESIGN Prospective, noninterventional, experimental study. SETTING A tertiary referral center. PATIENTS Thirty-eight adult CI users with poor (n = 11), fair (n = 13), and good (n = 16) word recognition performance. MAIN OUTCOME MEASURE Transimpedances were measured after 37 μs. Word recognition score was recorded at 65 dB SPL for German monosyllables in quiet. Transimpedance half widths were calculated as a marker for spread of the electric field. RESULTS Narrow and broad spread of the electric field, i.e., small and large half widths, were observed in all word recognition performance groups. Most of the transimpedance matrices showed a pattern of expansion along the diagonal toward the apical electrode contacts. Word recognition was not correlated with transimpedance half widths. CONCLUSIONS The half width of the spread of the electric field showed no correlation with word recognition scores in our study population.
Collapse
Affiliation(s)
- Anna C Kopsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Halle (Saale), Germany
| | | | | | | |
Collapse
|
9
|
Söderqvist S, Sivonen V, Koivisto J, Aarnisalo A, Sinkkonen ST. Spread of the intracochlear electrical field: Implications for assessing electrode array location in cochlear implantation. Hear Res 2023; 434:108790. [PMID: 37196460 DOI: 10.1016/j.heares.2023.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The electrode-generated intracochlear electrical field (EF) spreads widely along the scala tympani surrounded by poorly-conducting tissue and it can be measured with monopolar transimpedance matrix (TIMmp). Bipolar TIM (TIMbp) allows estimations of local potential differences. With TIMmp, the correct alignment of the electrode array can be assessed, and TIMbp may be useful in more subtle evaluations of the electrode array's intracochlear location. In this temporal bone study, we investigated the effect of the cross-sectional scala area (SA) and the electrode-medial-wall distance (EMWD) on both TIMmp and TIMbp using three types of electrode arrays. Also, multiple linear regressions based on the TIMmp and TIMbp measurements were used to estimate the SA and EMWD. Six cadaver temporal bones were consecutively implanted with a lateral-wall electrode array (Slim Straight) and with two different precurved perimodiolar electrode arrays (Contour Advance and Slim Modiolar) for variation in EMWD. The bones were imaged with cone-beam computed tomography with simultaneous TIMmp and TIMbp measurements. The results from imaging and EF measurements were compared. SA increased from apical to basal direction (r = 0.96, p < 0.001). Intracochlear EF peak negatively correlated with SA (r = -0.55, p < 0.001) irrespective of the EMWD. The rate of the EF decay did not correlate with SA but it was faster in the proximity of the medial wall than in more lateral positions (r = 0.35, p < 0.001). For a linear comparison between the EF decaying proportionally to squared distance and anatomic dimensions, a square root of inverse TIMbp was applied and found to be affected by both SA and EMWD (r = 0.44 and r = 0.49, p < 0.001 for both). A regression model confirmed that together TIMmp and TIMbp can be used to estimate both SA and EMWD (R2 = 0.47 and R2 = 0.44, respectively, p < 0.001 for both). In TIMmp, EF peaks grow from basal to apical direction and EF decay is steeper in the proximity of the medial wall than in more lateral positions. Local potentials measured via TIMbp correlate with both SA and EMWD. Altogether, TIMmp and TIMbp can be used to assess the intracochlear and intrascalar position of the electrode array, and they may reduce the need for intra- and postoperative imaging in the future.
Collapse
Affiliation(s)
- Samuel Söderqvist
- Department of Otorhinolaryngology - Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, Helsinki 00130, Finland.
| | - Ville Sivonen
- Department of Otorhinolaryngology - Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, Helsinki 00130, Finland
| | - Juha Koivisto
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Antti Aarnisalo
- Department of Otorhinolaryngology - Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, Helsinki 00130, Finland
| | - Saku T Sinkkonen
- Department of Otorhinolaryngology - Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, Helsinki 00130, Finland
| |
Collapse
|
10
|
Rader T, Nachtigäller P, Linke T, Weißgerber T, Baumann U. Exponential fitting of spread of excitation response measurements in cochlear implants. J Neurosci Methods 2023; 391:109854. [PMID: 37031765 DOI: 10.1016/j.jneumeth.2023.109854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Hearing performance in cochlear implant (CI) users is variable. An objective measure which can allow a prediction of this performance is desirable. Spread of neural excitation (SoE) curves are an objective measure that can be obtained using the fitting software of cochlear implants and might be able to be used as a predictor. A novel method to interpret SoE curves is presented. New Method Spread of excitation measurements for three recording sites were fitted using two exponential functions. An asymmetric width measure was developed, defined as the distance in mm to the point, where 25% or 50% of peak normalized amplitude was reached, for each half of the SoE separately. Also, a novel population of subjects with MED-EL CIs is used. Furthermore, speech perception (speech reception threshold, SRT) was evaluated using a matrix sentence test in a multi-source noise field. RESULTS SoE width was narrowest for the basal recording site and widest for the apical recording site. Fitted SoE exponential functions were most asymmetric for the apical recording site. A significant positive correlation between sentence test SRT and SoE width at the apical recording site was found. Comparison with Existing Methods The use of an asymmetric width measure correlated strongly and positively with speech perception for apical recording sites, unlike the symmetric width measure used in previous studies. Presumably, longer electrodes allow stimulation of a more apical part of the cochlear. At the apical part of the cochlea, dendrites from a large region of the basilar membrane map to a narrow portion on the spiral ganglion, which might explain the observed asymmetry. CONCLUSIONS For subjects implanted with long electrode arrays, an asymmetric width measure correlates positively with apical SoE distance. However, due to lack of a sufficient amount of data, the results are currently less conclusive and need to be consolidated in a larger cohort of subjects.
Collapse
Affiliation(s)
- Tobias Rader
- Division of Audiology, Department for Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pascal Nachtigäller
- Division of Audiology, Department for Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Theresa Linke
- Dermatology Bad Soden, Bad Soden, Germany; Division of Audiological Acoustics, Department for Otorhinolaryngology, University Hospital Frankfurt, Frankfurt, Germany
| | - Tobias Weißgerber
- Division of Audiological Acoustics, Department for Otorhinolaryngology, University Hospital Frankfurt, Frankfurt, Germany.
| | - Uwe Baumann
- Division of Audiological Acoustics, Department for Otorhinolaryngology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
Garcia C, Deeks JM, Goehring T, Borsetto D, Bance M, Carlyon RP. SpeedCAP: An Efficient Method for Estimating Neural Activation Patterns Using Electrically Evoked Compound Action-Potentials in Cochlear Implant Users. Ear Hear 2022; 44:627-640. [PMID: 36477611 PMCID: PMC10097494 DOI: 10.1097/aud.0000000000001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Electrically evoked compound action-potentials (ECAPs) can be recorded using the electrodes in a cochlear implant (CI) and represent the synchronous responses of the electrically stimulated auditory nerve. ECAPs can be obtained using a forward-masking method that measures the neural response to a probe and masker electrode separately and in combination. The panoramic ECAP (PECAP) analyses measured ECAPs obtained using multiple combinations of masker and probe electrodes and uses a nonlinear optimization algorithm to estimate current spread from each electrode and neural health along the cochlea. However, the measurement of ECAPs from multiple combinations of electrodes is too time consuming for use in clinics. Here, we propose and evaluate SpeedCAP, a speedy method for obtaining the PECAP measurements that minimizes recording time by exploiting redundancies between multiple ECAP measures. DESIGN In the first study, 11 users of Cochlear Ltd. CIs took part. ECAPs were recorded using the forward-masking artifact-cancelation technique at the most comfortable loudness level (MCL) for every combination of masker and probe electrodes for all active electrodes in the users' MAPs, as per the standard PECAP recording paradigm. The same current levels and recording parameters were then used to collect ECAPs in the same users with the SpeedCAP method. The ECAP amplitudes were then compared between the two conditions, as were the corresponding estimates of neural health and current spread calculated using the PECAP method previously described by Garcia et al. The second study measured SpeedCAP intraoperatively in 8 CI patients and with all maskers and probes presented at the same current level to assess feasibility. ECAPs for the subset of conditions where the masker and probe were presented on the same electrode were compared with those obtained using the slower approach leveraged by the standard clinical software. RESULTS Data collection time was reduced from ≈45 to ≈8 minutes. There were no significant differences between normalized root mean squared error (RMSE) repeatability metrics for post-operative PECAP and SpeedCAP data, nor for the RMSEs calculated between PECAP and SpeedCAP data. The comparison achieved 80% power to detect effect sizes down to 8.2% RMSE. When between-participant differences were removed, both the neural-health (r = 0.73) and current-spread (r = 0.65) estimates were significantly correlated (p < 0.0001, df = 218) between SpeedCAP and PECAP conditions across all electrodes, and showed RMSE errors of 12.7 ± 4.7% and 16.8 ± 8.8%, respectively (with the ± margins representing 95% confidence intervals). Valid ECAPs were obtained in all patients in the second study, demonstrating intraoperative feasibility of SpeedCAP. No significant differences in RMSEs were detectable between post- and intra-operative ECAP measurements, with the comparison achieving 80% power to detect effect sizes down to 13.3% RMSE. CONCLUSIONS The improved efficiency of SpeedCAP provides time savings facilitating multi-electrode ECAP recordings in routine clinical practice. SpeedCAP data collection is sufficiently quick to record intraoperatively, and adds no more than 8.2% error to the ECAP amplitudes. Such measurements could thereafter be submitted to models such as PECAP to provide patient-specific patterns of neural activation to inform programming of clinical MAPs and identify causes of poor performance at the electrode-nerve interface of CI users. The speed and accuracy of these measurements also opens up a wide range of additional research questions to be addressed.
Collapse
Affiliation(s)
- Charlotte Garcia
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - John M Deeks
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Tobias Goehring
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Daniele Borsetto
- Cambridge Hearing Group, Cambridge Universities Hospitals Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Manohar Bance
- Cambridge Hearing Group, Cambridge Universities Hospitals Foundation Trust, University of Cambridge, Cambridge, United Kingdom
| | - Robert P Carlyon
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Söderqvist S, Sinkkonen ST, Sivonen V. The intraoperative relationship between intracochlear electrical field and excitability of the auditory nerve. Heliyon 2022; 8:e11970. [DOI: 10.1016/j.heliyon.2022.e11970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
|
13
|
Kopsch AC, Rahne T, Plontke SK, Wagner L. Influence of the spread of electric field on neural excitation in cochlear implant users: Transimpedance and spread of excitation measurements. Hear Res 2022; 424:108591. [PMID: 35914395 DOI: 10.1016/j.heares.2022.108591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
Abstract
Channel interactions caused by spread of the intracochlear electric field and, thus, the spread of neural excitation constrain frequency selectivity and speech recognition in cochlear implant (CI) users. Studying the influence of the spread of electric field (SEF) on the spread of excitation (SOE) can help us better understand the electrical-neural interface. The primary aim of this study was to examine the influence of the SEF on the SOE. In 38 Nucleus (Cochlear Ltd. Sydney, Australia) CI recipients, we assessed the spatial SEF by measuring the voltage drop (transimpedance) and the SOE through neural responses (electrically evoked compound action potentials [eCAPs]) along the electrode array. Transimpedance was recorded using the monopolar (MP2) mode as the stimulation and recording mode. Biphasic square-wave pulses with an amplitude of 110 CL and duration of 37 µs were used for stimulation. SOE was measured at the probe active electrodes E5, E13, and E18. The stimulation amplitudes were set individually to the thresholds of the neural response telemetry (T-NRT), which were measured by the AutoNRT protocol. The transimpedance half-widths were between 0.00 electrodes and 8.55 electrodes. The SOE half-widths reached values between 0.54 electrodes and 5.70 electrodes. Considering individual transimpedance and SOE half-widths, the SEF and SOE showed a significant positive correlation only at electrode E13. Furthermore, this study shows a significant negative correlation of the SEF and SOE in consideration of mean half-widths.
Collapse
Affiliation(s)
- Anna C Kopsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Halle, Germany.
| | - Torsten Rahne
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Halle, Germany.
| | - Stefan K Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Halle, Germany.
| | - Luise Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Halle, Germany.
| |
Collapse
|
14
|
Ertas YN, Ozpolat D, Karasu SN, Ashammakhi N. Recent Advances in Cochlear Implant Electrode Array Design Parameters. MICROMACHINES 2022; 13:1081. [PMID: 35888898 PMCID: PMC9323156 DOI: 10.3390/mi13071081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
Cochlear implants are neural implant devices that aim to restore hearing in patients with severe sensorineural hearing impairment. Here, the main goal is to successfully place the electrode array in the cochlea to stimulate the auditory nerves through bypassing damaged hair cells. Several electrode and electrode array parameters affect the success of this technique, but, undoubtedly, the most important one is related to electrodes, which are used for nerve stimulation. In this paper, we provide a comprehensive resource on the electrodes currently being used in cochlear implant devices. Electrode materials, shape, and the effect of spacing between electrodes on the stimulation, stiffness, and flexibility of electrode-carrying arrays are discussed. The use of sensors and the electrical, mechanical, and electrochemical properties of electrode arrays are examined. A large library of preferred electrodes is reviewed, and recent progress in electrode design parameters is analyzed. Finally, the limitations and challenges of the current technology are discussed along with a proposal of future directions in the field.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; (D.O.); (S.N.K.)
- ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Derya Ozpolat
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; (D.O.); (S.N.K.)
- ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Saime Nur Karasu
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; (D.O.); (S.N.K.)
- ERNAM—Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Söderqvist S, Sivonen V, Lamminmäki S, Ylönen J, Markkola A, Sinkkonen ST. Investigating the association of electrically-evoked compound action potential thresholds with inner-ear dimensions in pediatric cochlear implantation. Int J Pediatr Otorhinolaryngol 2022; 158:111160. [PMID: 35544967 DOI: 10.1016/j.ijporl.2022.111160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/12/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES A narrow bony cochlear nerve canal (BCNC), as well as a hypoplastic and aplastic cochlear nerve (CN) have been associated with increased electrically-evoked compound action potential (eCAP) thresholds in some studies, suggesting poorer neural excitability in cochlear implantation. Also, in large cochleae the extent of activated spiral ganglion neurons with electrical stimulation is less than in smaller ones. However, a detailed description of the relationship between eCAP thresholds for a lateral-wall electrode array and dimensions of the inner-ear structures and internal auditory canal (IAC) is missing. DESIGN The study subjects were 52 pediatric patients with congenital severe-to-profound hearing loss (27 females and 25 males; ages 0.7-2.0 years; 1.0 ± 0.3 years, mean ± SD) implanted bilaterally with Cochlear Nucleus CI422, CI522, or CI622 implants with full insertion of the Slim Straight electrode array. Diameters of the cochlea and the BCNC as well as the widths and heights of the IAC and the CN were evaluated from preoperative computed tomography and magnetic resonance images. These anatomical dimensions were compared with each other and with the patients' intraoperative eCAP thresholds. RESULTS The eCAP thresholds increased from the apical to basal direction (r = 0.89, p < 0.001). After sorting the cochleae into four size categories, higher eCAP thresholds were found in larger than in smaller cochleae (p < 0.001). With similar categorization, the eCAP thresholds were higher in cochleae with a larger BCNC than in cochleae with a smaller BCNC (p < 0.001). Neither IAC nor CN cross-sectional areas affected the eCAP thresholds. Correlations were found between cochlea and BCNC diameters and between IAC and CN cross-sectional areas (r = 0.39 and r = 0.48, respectively, p < 0.001 for both). CONCLUSIONS In the basal part of the electrode array, higher stimulation levels to elicit measurable neural responses (eCAP thresholds) were required than in the apical part. Increased eCAP thresholds associated with a larger cochlear diameter, but contrary to the earlier studies, not with a small size of the BCNC or the CN. Instead, the BCNC diameter correlated significantly with the cochlea diameter.
Collapse
Affiliation(s)
- Samuel Söderqvist
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Ville Sivonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Satu Lamminmäki
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jere Ylönen
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology, Päijät-Häme Central Hospital, Päijät-Häme Joint Authority for Health and Wellbeing, Finland
| | - Antti Markkola
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Saku T Sinkkonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Rauterkus G, Maxwell AK, Kahane JB, Lentz JJ, Arriaga MA. Conversations in Cochlear Implantation: The Inner Ear Therapy of Today. Biomolecules 2022; 12:649. [PMID: 35625577 PMCID: PMC9138212 DOI: 10.3390/biom12050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
As biomolecular approaches for hearing restoration in profound sensorineural hearing loss evolve, they will be applied in conjunction with or instead of cochlear implants. An understanding of the current state-of-the-art of this technology, including its advantages, disadvantages, and its potential for delivering and interacting with biomolecular hearing restoration approaches, is helpful for designing modern hearing-restoration strategies. Cochlear implants (CI) have evolved over the last four decades to restore hearing more effectively, in more people, with diverse indications. This evolution has been driven by advances in technology, surgery, and healthcare delivery. Here, we offer a practical treatise on the state of cochlear implantation directed towards developing the next generation of inner ear therapeutics. We aim to capture and distill conversations ongoing in CI research, development, and clinical management. In this review, we discuss successes and physiological constraints of hearing with an implant, common surgical approaches and electrode arrays, new indications and outcome measures for implantation, and barriers to CI utilization. Additionally, we compare cochlear implantation with biomolecular and pharmacological approaches, consider strategies to combine these approaches, and identify unmet medical needs with cochlear implants. The strengths and weaknesses of modern implantation highlighted here can mark opportunities for continued progress or improvement in the design and delivery of the next generation of inner ear therapeutics.
Collapse
Affiliation(s)
- Grant Rauterkus
- Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Anne K. Maxwell
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jacob B. Kahane
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jennifer J. Lentz
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Moises A. Arriaga
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Hearing and Balance Center, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70808, USA
- Hearing Balance Center, Culicchia Neurological Clinic, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Joly CA, Reynard P, Hermann R, Seldran F, Gallego S, Idriss S, Thai-Van H. Intra-Cochlear Current Spread Correlates with Speech Perception in Experienced Adult Cochlear Implant Users. J Clin Med 2021; 10:jcm10245819. [PMID: 34945115 PMCID: PMC8709369 DOI: 10.3390/jcm10245819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Broader intra-cochlear current spread (ICCS) implies higher cochlear implant (CI) channel interactions. This study aimed to investigate the relationship between ICCS and speech intelligibility in experienced CI users. Using voltage matrices collected for impedance measurements, an individual exponential spread coefficient (ESC) was computed. Speech audiometry was performed to determine the intelligibility at 40 dB Sound Pressure Level (SPL) and the 50% speech reception threshold: I40 and SRT50 respectively. Correlations between ESC and either I40 or SRT50 were assessed. A total of 36 adults (mean age: 50 years) with more than 11 months (mean: 34 months) of CI experience were included. In the 21 subjects for whom all electrodes were active, ESC was moderately correlated with both I40 (r = −0.557, p = 0.009) and SRT50 (r = 0.569, p = 0.007). The results indicate that speech perception performance is negatively affected by the ICCS. Estimates of current spread at the closest vicinity of CI electrodes and prior to any activation of auditory neurons are indispensable to better characterize the relationship between CI stimulation and auditory perception in cochlear implantees.
Collapse
Affiliation(s)
- Charles-Alexandre Joly
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France; (C.-A.J.); (P.R.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Service d’Audiologie et d’Explorations Otoneurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France;
| | - Pierre Reynard
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France; (C.-A.J.); (P.R.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Service d’Audiologie et d’Explorations Otoneurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France;
| | - Ruben Hermann
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, 69675 Bron, France
- Service d’ORL, Chirurgie Cervico-Faciale et d’Audiophonologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France
| | | | - Stéphane Gallego
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Neuronal Dynamics and Audition Team (DNA), Laboratory of Cognitive Neuroscience, CNRS UMR7291, Aix-Marseille University, CEDEX 3, 13331 Marseille, France
| | - Samar Idriss
- Service d’Audiologie et d’Explorations Otoneurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France;
| | - Hung Thai-Van
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France; (C.-A.J.); (P.R.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Service d’Audiologie et d’Explorations Otoneurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France;
- Correspondence:
| |
Collapse
|