1
|
de Souza PC, Corrêa AEDN, Gameiro JG, de Oliveira Júnior AG, Panagio LA, Venancio EJ, Almeida RS. Production of IgY against iron permease Ftr1 from Candida albicans and evaluation of its antifungal activity using Galleria mellonella as a model of systemic infection. Microb Pathog 2023:106166. [PMID: 37290729 DOI: 10.1016/j.micpath.2023.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Candida albicans is one of the leading pathological agents of mucosal and deep tissue infections. Considering that the variety of antifungals is restricted and that toxicity limits their use, immunotherapies against pathogenic fungi have been viewed as alternatives with reduced adverse effects. In this context, C. albicans has a protein used to capture iron from the environment and the host, known as the high-affinity iron permease Ftr1. This protein may be a new target of action for novel antifungal therapies, as it influences the virulence of this yeast. Thus, the aim of the present study was to produce and conduct the biological characterization of IgY antibodies against C. albicans Ftr1. Immunization of laying hens with an Ftr1-derived peptide resulted in IgY antibodies extracted from egg yolks capable of binding to the antigen with high affinity (avidity index = 66.6 ± 0.3%). These antibodies reduced the growth and even eliminated C. albicans under iron restriction, a favorable condition for the expression of Ftr1. This also occurred with a mutant strain that does not produce Ftr1 in the presence of iron, a circumstance in which the protein analog of iron permease, Ftr2, is expressed. Furthermore, the survival of G. mellonella larvae infected with C. albicans and treated with the antibodies was 90% higher than the control group, which did not receive treatment (p < 0.0001). Therefore, our data suggest that IgY antibodies against Ftr1 from C. albicans can inhibit yeast propagation by blocking iron uptake.
Collapse
Affiliation(s)
- Patricia Canteri de Souza
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Alana Elke do Nascimento Corrêa
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Juliana Gutschow Gameiro
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Admilton Gonçalves de Oliveira Júnior
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Luciano Aparecido Panagio
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Emerson José Venancio
- Department of Pathological Sciences, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Ricardo Sergio Almeida
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil.
| |
Collapse
|
2
|
IgY antibody and human neurocysticercosis: a novel approach on immunodiagnosis usingTaenia crassicepshydrophobic antigens. Parasitology 2019; 147:240-247. [DOI: 10.1017/s0031182019001446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractHuman neurocysticercosis (NCC) is a worldwide neglected disease caused byTaenia soliummetacestode and responsible for various complications and neurological disorders. This study aimed to evaluate the use of specific immunoglobulin Y (IgY) produced by laying hens immunized with a hydrophobic fraction ofTaenia crassicepsmetacestodes (hFTc) in NCC diagnosis. Egg yolk IgY antibodies were fractionated, purified and characterized. Enzyme-linked immunosorbent assay (ELISA) was carried out to evaluate the production kinetics and avidity maturation of anti-hFTcIgY antibodies throughout the IgY obtention process. Antigen recognition tests were carried out by Western blotting and immunofluorescence antibody test using purified and specific anti-hFTcIgY antibodies for detection of parasitic antigens ofT. crassicepsandT. soliummetacestodes. Sandwich ELISA was performed to detect circulating immune complexes formed by IgG and parasitic antigens in human sera. The results showed high diagnostic values (93.2% sensitivity and 94.3% specificity) for immune complexes detection in human sera with confirmed NCC. In conclusion, specific IgY antibodies produced from immunized hens with hFTcantigens were efficient to detectT. soliumimmune complexes in human sera, being an innovative and potential tool for NCC immunodiagnosis.
Collapse
|