1
|
Osteoclastogenesis of human peripheral blood, bone marrow, and cord blood monocytes. Sci Rep 2023; 13:3763. [PMID: 36882450 PMCID: PMC9992388 DOI: 10.1038/s41598-023-30701-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Osteoclasts are multinucleated bone resorbing cells that can be differentiated from human monocytes in vitro. There are few studies comparing osteoclastogenesis of different monocyte sources. We compared monocytes from human bone marrow (BM), peripheral blood (PB), and umbilical cord blood (CB) and their osteoclastogenic potential by culturing them with RANKL (20 and 80 ng/ml) and M-CSF (10 ng/ml) for 14 days. We also cultured cells without growth factors, as umbilical cord blood monocytes have been reported to be able to fuse spontaneously into osteoclasts. The data was analysed on d4, d8, d11, and d14. After culture with RANKL and M-CSF, all types of cell cultures developed TRACP -positive multinuclear cells that were able to form resorption pits on human bone slices. Only occasional multinuclear cells and small infrequent resorbed areas could be found in PB and CB-derived cultures without growth factors. BM-derived cells formed greater resorption areas than PB- and CB-derived monocytes. The greatest monocyte population in BM samples were intermediate (CD14++CD16+) and in PB and CB classical monocytes (76.3% and 54.4%, respectively). In conclusion, our data demonstrates that bone resorbing osteoclasts can be differentiated from BM, PB and CB. However, the osteoclast precursor origin can affect the osteoclast properties and function.
Collapse
|
2
|
Gong S, Ma J, Tian A, Lang S, Luo Z, Ma X. Effects and mechanisms of microenvironmental acidosis on osteoclast biology. Biosci Trends 2021; 16:58-72. [PMID: 34732613 DOI: 10.5582/bst.2021.01357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Due to continuous bone remodeling, the bone tissue is dynamic and constantly being updated. Bone remodeling is precisely regulated by the balance between osteoblast-induced bone formation and osteoclast-induced bone resorption. As a giant multinucleated cell, formation and activities of osteoclasts are regulated by macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor-kappaB ligand (RANKL), and by pathological destabilization of the extracellular microenvironment. Microenvironmental acidosis, as the prime candidate, is a driving force of multiple biological activities of osteoclast precursor and osteoclasts. The mechanisms involved in these processes, especially acid-sensitive receptors/channels, are of great precision and complicated. Recently, remarkable progress has been achieved in the field of acid-sensitive mechanisms of osteoclasts. It is important to elucidate the relationship between microenvironmental acidosis and excessive osteoclasts activity, which will help in understanding the pathophysiology of diseases that are associated with excess bone resorption. This review summarizes physiological consequences and in particular, potential mechanisms of osteoclast precursor or osteoclasts in the context of acidosis microenvironments.
Collapse
Affiliation(s)
- Shuwei Gong
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianxiong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Aixian Tian
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Shuang Lang
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiheng Luo
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Orthopedic Research Institute, Tianjin Hospital, Tianjin, China.,Department of Orthopedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
3
|
Zhang Y, Liu MW, He Y, Deng N, Chen Y, Huang J, Xie W. Protective effect of resveratrol on estrogen deficiency-induced osteoporosis though attenuating NADPH oxidase 4/nuclear factor kappa B pathway by increasing miR-92b-3p expression. Int J Immunopathol Pharmacol 2021; 34:2058738420941762. [PMID: 32674689 PMCID: PMC7370339 DOI: 10.1177/2058738420941762] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: Resveratrol (RES) exhibits estrogen-like effects and has potential applications to treatment of osteoporosis caused by estrogen deficiency; however, the specific mechanism of action of RES remains unclear. Here, we examined the therapeutic effects of RES on ovariectomized (OVX) rats with osteoporosis and determined the underlying mechanism. Methods: We established an OVX rat model to study osteoporosis caused by estrogen deficiency. The treatment groups were given orally with RES (50, 100, and 200 mg/day), the estrogen group received 0.8 mg/kg E2 daily via oral route, and the sham-operated and control groups received an equivalent dose of sodium carboxymethylcellulose orally. After 12 weeks of treatment, we used real-time quantitative polymerase chain reaction (PCR) and Western blot analysis to measure the gene and protein expression of miR-92b-3p, Nox4, NF-κBp65, IκB, BMP2, Smad7, and RUNX-2 in bone tissues. Right femur structural parameters were evaluated by micro-CT. Dual-energy X-ray 4500 W was used to determine systemic bone mineral density (BMD). Enzyme-linked immunosorbent assay (ELISA) kits were used to determine the serum levels of bone alkaline phosphatase (BALP), osteoprotegerin (OPG), anti-tartrate acid phosphatase-5b (PTRA5b), and carboxylated terminal peptide (CTX-I). The rat femoral bone specimens were stained using hematoxylin and eosin for pathological examination Results: We observed increased levels of serum estrogen in both ovaries, elevated miR-92b-3p levels in bone tissues, reduced levels of Nox4, NF-κBp65, p-IκB-a, and cathepsin K, and elevated gene and protein expression of BMP2, Smad7, and RUNX-2 in the OVX rat model of osteoporosis after treatment with RES. Elevated levels of BALP, OPG, ALP, and BMD along with reduced levels of TRAP-5b and CTX-I were also observed. The structural model index (SMI) and the trabecular space (Tb. Sp) decreased, while the trabecular thickness (Tb. Th), bone volume fraction (BV/TV), trabecular number (Tb.N), and tissue bone density (Conn.D) increased, thereby improving osteoporosis induced by estrogen deficiency in both ovaries. Conclusion: Cathepsin K expression and Nox4/NF-κB signaling pathway were suppressed by the elevated expression of miR-92b-3p. This inhibition was pivotal in the protective effect of RES against osteoporosis induced by estrogen deficiency in both ovaries. Thus, RES efficiently alleviated osteoporosis induced by estrogen deficiency in rats.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Traditional Chinese Medicine, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Ming-Wei Liu
- Department of Emergency Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun He
- Department of Orthopedics, Calmett Hospital & The First Hospital of Kunming, Kunming, China
| | - Ning Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Normal Human Anatomy and Histological Embryology Department, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jiecong Huang
- Department of Encephalopathy, Guangzhou Conghua Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. MICROMACHINES 2021; 12:mi12030287. [PMID: 33800485 PMCID: PMC8000586 DOI: 10.3390/mi12030287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.
Collapse
Affiliation(s)
- Ye Lin Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
| | - Kiwon Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| |
Collapse
|
5
|
Singh AK, Cancelas JA. Gap Junctions in the Bone Marrow Lympho-Hematopoietic Stem Cell Niche, Leukemia Progression, and Chemoresistance. Int J Mol Sci 2020; 21:E796. [PMID: 31991829 PMCID: PMC7038046 DOI: 10.3390/ijms21030796] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract: The crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for homeostasis and hematopoietic regeneration in response to blood formation emergencies after injury, and has been associated with leukemia transformation and progression. Intercellular signals by the BM stromal cells in the form of cell-bound or secreted factors, or by physical interaction, regulate HSC localization, maintenance, and differentiation within increasingly defined BM HSC niches. Gap junctions (GJ) are comprised of arrays of membrane embedded channels formed by connexin proteins, and control crucial signaling functions, including the transfer of ions, small metabolites, and organelles to adjacent cells which affect intracellular mechanisms of signaling and autophagy. This review will discuss the role of GJ in both normal and leukemic hematopoiesis, and highlight some of the most novel approaches that may improve the efficacy of cytotoxic drugs. Connexin GJ channels exert both cell-intrinsic and cell-extrinsic effects on HSC and BM stromal cells, involved in regenerative hematopoiesis after myelosuppression, and represent an alternative system of cell communication through a combination of electrical and metabolic coupling as well as organelle transfer in the HSC niche. GJ intercellular communication (GJIC) in the HSC niche improves cellular bioenergetics, and rejuvenates damaged recipient cells. Unfortunately, they can also support leukemia proliferation and survival by creating leukemic niches that provide GJIC dependent energy sources and facilitate chemoresistance and relapse. The emergence of new strategies to disrupt self-reinforcing malignant niches and intercellular organelle exchange in leukemic niches, while at the same time conserving normal hematopoietic GJIC function, could synergize the effect of chemotherapy drugs in eradicating minimal residual disease. An improved understanding of the molecular basis of connexin regulation in normal and leukemic hematopoiesis is warranted for the re-establishment of normal hematopoiesis after chemotherapy.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Kylmäoja E, Nakamura M, Turunen S, Patlaka C, Andersson G, Lehenkari P, Tuukkanen J. Peripheral blood monocytes show increased osteoclast differentiation potential compared to bone marrow monocytes. Heliyon 2018; 4:e00780. [PMID: 30225379 PMCID: PMC6138956 DOI: 10.1016/j.heliyon.2018.e00780] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 11/29/2022] Open
Abstract
Bone marrow (BM) and peripheral blood (PB) derived mononuclear cells are precursors of in vitro osteoclast differentiation. However, few studies have compared the phenotypic and functional properties of osteoclasts generated from these sources and the effects of different growth factors on osteoclastogenesis. Both cell types differentiated into functional osteoclasts, but culturing the cells with or without transforming growth factor beta (TGF-β) and dexamethasone revealed differences in their osteoclastogenic capacity. When receptor activator for nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) were used for differentiation, we did not observe differences in bone resorption activity or expression of osteoclastogenic genes calcitonin receptor (CR) and nuclear factor of activated T-cells (NFATc1) between the osteoclasts formed from the two sources. Addition of TGF-β and dexamethasone led to higher number of nuclei in multinuclear cells and increased expression of tartrate resistant acid phosphatase (TRACP) 5a and 5b, CR and NFATc1 in PB- derived osteoclasts depicting the higher osteoclastogenic potential and responsiveness to TGF-β and dexamethasone in PB monocytes. These results conclude that the choice of the osteoclast precursor source as well as the choice of osteoclastogenic growth factors are essential matters in determining the phenotypic characteristics of heterogeneous osteoclast populations.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| | - Miho Nakamura
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062, Japan
| | - Sanna Turunen
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| | - Christina Patlaka
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Petri Lehenkari
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| | - Juha Tuukkanen
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| |
Collapse
|