1
|
Sun L, Sun J, Li C, Wu K, Gu Z, Guo L, Zhou Y, Han B, Chang J. STAT3-specific nanocarrier for shRNA/drug dual delivery and tumor synergistic therapy. Bioact Mater 2024; 41:137-157. [PMID: 39131627 PMCID: PMC11314445 DOI: 10.1016/j.bioactmat.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major disease with high incidence, low survival rate and prone to develop drug resistance to chemotherapy. The mechanism of secondary drug resistance in NSCLC chemotherapy is very complex, and studies have shown that the abnormal activation of STAT3 (Signal Transducer and Activator of Transcription 3) plays an important role in it. In this study, the pGPU6/GFP/Neo STAT3-shRNA recombinant plasmid was constructed with STAT3 as the precise target. By modifying hydrophilic and hydrophobic blocks onto chitosan, a multifunctional vitamin E succinate-chitosan-polyethylene glycol monomethyl ether histidine (VES-CTS-mPEG-His) micelles were synthesized. The micelles could encapsulate hydrophobic drug doxorubicin through self-assembly, and load the recombinant pGPU6/GFP/Neo STAT3-shRNA (pDNA) through positive and negative charges to form dual-loaded nanoparticles DOX/VCPH/pDNA. The co-delivery and synergistic effect of DOX and pDNA could up-regulate the expression of PTEN (Phosphatase and Tensin Homolog), down-regulate the expression of CD31, and induce apoptosis of tumor cells. The results of precision targeted therapy showed that DOX/VCPH/pDNA could significantly down-regulate the expression level of STAT3 protein, further enhancing the efficacy of chemotherapy. Through this study, precision personalized treatment of NSCLC could be effectively achieved, reversing its resistance to chemotherapy drugs, and providing new strategies for the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Le Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Keying Wu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Yi Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| |
Collapse
|
2
|
Li YZ, Kong SN, Liu YP, Yang Y, Zhang HM. Can Liquid Biopsy Based on ctDNA/cfDNA Replace Tissue Biopsy for the Precision Treatment of EGFR-Mutated NSCLC? J Clin Med 2023; 12:jcm12041438. [PMID: 36835972 PMCID: PMC9966257 DOI: 10.3390/jcm12041438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
More and more clinical trials have explored the role of liquid biopsy in the diagnosis and treatment of EGFR-mutated NSCLC. In certain circumstances, liquid biopsy has unique advantages and offers a new way to detect therapeutic targets, analyze drug resistance mechanisms in advanced patients, and monitor MRD in patients with operable NSCLC. Although its potential cannot be ignored, more evidence is needed to support the transition from the research stage to clinical application. We reviewed the latest progress in research on the efficacy and resistance mechanisms of targeted therapy for advanced NSCLC patients with plasma ctDNA EGFR mutation and the evaluation of MRD based on ctDNA detection in perioperative and follow-up monitoring.
Collapse
|
3
|
Pesta M, Shetti D, Kulda V, Knizkova T, Houfkova K, Bagheri MS, Svaton M, Polivka J. Applications of Liquid Biopsies in Non-Small-Cell Lung Cancer. Diagnostics (Basel) 2022; 12:1799. [PMID: 35892510 PMCID: PMC9330570 DOI: 10.3390/diagnostics12081799] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
The concept of liquid biopsy as an analysis tool for non-solid tissue carried out for the purpose of providing information about solid tumors was introduced approximately 20 years ago. Additional to the detection of circulating tumor cells (CTCs), the liquid biopsy approach quickly included the analysis of circulating tumor DNA (ctDNA) and other tumor-derived markers such as circulating cell-free RNA or extracellular vesicles. Liquid biopsy is a non-invasive technique for detecting multiple cancer-associated biomarkers that is easy to obtain and can reflect the characteristics of the entire tumor mass. Currently, ctDNA is the key component of the liquid biopsy approach from the point of view of the prognosis assessment, prediction, and monitoring of the treatment of non-small-cell lung cancer (NSCLC) patients. ctDNA in NSCLC patients carries variants or rearrangements that drive carcinogenesis, such as those in EGFR, KRAS, ALK, or ROS1. Due to advances in pharmacology, these variants are the subject of targeted therapy. Therefore, the detection of these variants has gained attention in clinical medicine. Recently, methods based on qPCR (ddPCR, BEAMing) and next-generation sequencing (NGS) are the most effective approaches for ctDNA analysis. This review addresses various aspects of the use of liquid biopsy with an emphasis on ctDNA as a biomarker in NSCLC patients.
Collapse
Affiliation(s)
- Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Dattatrya Shetti
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic;
| | - Tereza Knizkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Mahyar Sharif Bagheri
- Department of Histology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (M.S.B.); (J.P.)
| | - Martin Svaton
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, University Hospital in Pilsen, E. Benese 13, 301 00 Plzen, Czech Republic;
| | - Jiri Polivka
- Department of Histology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (M.S.B.); (J.P.)
| |
Collapse
|
4
|
Prevalence of targeted therapy-related genetic variations in NSCLC and their relationship with clinicopathological characteristics. PLoS One 2022; 17:e0262822. [PMID: 35061839 PMCID: PMC8782298 DOI: 10.1371/journal.pone.0262822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common cancer type in China. Targeted therapies have been used to treat NSCLC for two decades, which is only suitable for a subgroup of patients with specific genetic variations. The aim of this study was to investigate the prevalence of genetic variations leading to sensitivity or resistance to targeted therapies in NSCLC, and their relationship with clinicopathological characteristics of the patients. Methods Tumor samples were collected from 404 patients who were diagnosed to have NSCLC and underwent surgery, transthoracic biopsy, bronchoscopy biopsy, or pleural aspiration in Sichuan Provincial People’s Hospital from January 2019 to March 2020. Commercial amplification-refractory mutation system kits were used to detect targeted therapy-related genetic variations in those tumor samples. The prevalence of genetic variations and their relationship with patient clinicopathological characteristics were analyzed using statistical software, followed by subgroup analysis. Results In all, 50.7% of the NSCLC patients had sensitive genetic variations to anti-EGFR therapies, and 4.9% of those patients had co-existing resistant genetic variations. Fusions in ALK, ROS1, or RET were found in 7.7% of the patients, including 2 patients with co-existing EGFR exon 19 deletion or L858R. EGFR exon 19 deletion and L858R were more common in female patients and adenocarcinoma. Further subgroup analysis confirmed the observation in female patients in adenocarcinoma subgroup, and in adenocarcinoma in male patients. In addition, smokers were more likely to have squamous cell carcinoma and KRAS mutation and less likely to have EGFR L858R, which were also confirmed after standardization of gender except KRAS mutations. Conclusion Nearly half of the NSCLC patients were eligible for anti-EGFR treatments. In NSCLC, female gender and adenocarcinoma may indicate higher chance of EGFR exon 19 deletion or L858R, and smoking history may indicate squamous cell carcinoma and EGFR L858R.
Collapse
|
5
|
Cheng Y, He Y, Li W, Zhang HL, Zhou Q, Wang B, Liu C, Walding A, Saggese M, Huang X, Fan M, Wang J, Ramalingam SS. Osimertinib Versus Comparator EGFR TKI as First-Line Treatment for EGFR-Mutated Advanced NSCLC: FLAURA China, A Randomized Study. Target Oncol 2021; 16:165-176. [PMID: 33544337 PMCID: PMC7935816 DOI: 10.1007/s11523-021-00794-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Background In the global FLAURA study, first-line osimertinib, a third-generation irreversible tyrosine kinase inhibitor (TKI) of epidermal growth factor receptor (EGFR), significantly improved progression-free survival (PFS) and overall survival (OS) versus comparator EGFR TKIs in patients with EGFR mutation-positive (EGFRm) advanced non-small-cell lung cancer (NSCLC). Objective The FLAURA China study assessed first-line osimertinib in Chinese patients with EGFRm advanced NSCLC (NCT02296125). Methods FLAURA China was a double-blind, randomized, phase III study. Adults from mainland China with previously untreated EGFRm (Exon 19 deletion or L858R) advanced NSCLC were enrolled in the global study or a China-only study under the same protocol; 136 patients were randomized to osimertinib (80 mg once daily [od]; n = 71) or comparator EGFR TKI (gefitinib or erlotinib; all sites selected gefitinib 250 mg od; n = 65). Patients were randomized and allocated to treatment groups by a central computer system. Treatment continued until disease progression, unacceptable toxicity, or withdrawal of consent. The primary endpoint was investigator-assessed PFS; OS was a secondary endpoint. Results All 136 randomized patients were analyzed. Osimertinib extended median PFS by 8.0 months versus comparator EGFR TKI (17.8 vs. 9.8 months; hazard ratio [HR] 0.56; 95% confidence interval [CI] 0.37–0.85). Median OS was 33.1 months in the osimertinib group versus 25.7 months in the comparator group (HR 0.85; 95% CI 0.56–1.29). At 3 years, 20% of patients on osimertinib and 8% on the comparator remained on randomized treatment. Grade 3 or higher adverse events (AEs) were reported in 54 and 28% of patients in the osimertinib and comparator groups, respectively, driven by increased local reporting of laboratory- and disease-related AEs. No new safety signals were identified. Conclusions First-line osimertinib treatment resulted in a clinically meaningful PFS and OS benefit versus comparator EGFR TKI in Chinese patients with EGFRm advanced NSCLC. Safety data were consistent with the known safety profile of osimertinib. Clinical Trial Registration ClinicalTrials.gov NCT02296125, registered 20 November 2014 Supplementary Information The online version contains supplementary material available at 10.1007/s11523-021-00794-6.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Medical Oncology, Jilin Provincial Cancer Hospital, Changchun, 130000, China.
| | - Yong He
- Respiratory Disease, Daping Hospital, Chongqing, China
| | - Wei Li
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - He-Long Zhang
- Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Buhai Wang
- Department of Oncology of Subei People's Hospital, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunling Liu
- Tumor Hospital, Xinjiang Medical University, Urumqi, China
| | - Andrew Walding
- Global Medicines Development, GMED Oncology, AstraZeneca, Cambridge, UK
| | - Matilde Saggese
- Global Medicines Development, GMED Oncology, AstraZeneca, Cambridge, UK
| | - Xiangning Huang
- Global Medicines Development, GMED Oncology, AstraZeneca, Cambridge, UK
| | - Minhao Fan
- Global Medicines Development, AstraZeneca, Shanghai, China
| | - Jia Wang
- Global Medicines Development, AstraZeneca, Shanghai, China
| | - Suresh S Ramalingam
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Nilsson FOL, Gal P, Houisse I, Ivanova JI, Asanin ST. The cost-effectiveness of dacomitinib in first-line treatment of advanced/metastatic epidermal growth factor receptor mutation-positive non-small-cell lung cancer ( EGFRm NSCLC) in Sweden. J Med Econ 2021; 24:447-457. [PMID: 33754924 DOI: 10.1080/13696998.2021.1901722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIMS Although the benefit of first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) over chemotherapy in EGFR mutation-positive (EGFRm) non-small-cell lung cancer (NSCLC) has been demonstrated in clinical trials, the optimal treatment sequence remains unclear. The objective of our study was to evaluate the cost-effectiveness of dacomitinib in Sweden vs afatinib and osimertinib in first-line treatment of EGFRm NSCLC. MATERIALS AND METHODS A partitioned survival model was developed with three health states: progression-free, post-progression, and death. Progression-free and overall survival curves were used to inform movements between states. Clinical data were taken from randomized trials, compared via a network meta-analysis (NMA). Utility data were taken from published studies and costs from national Swedish sources. The model used a 15-year time horizon and a Swedish healthcare payer perspective. Sensitivity and scenario analyses were performed. RESULTS The base-case analysis showed that dacomitinib accrued a total of 2.10 quality-adjusted life-years (QALYs) at a total cost of Swedish krona (SEK) 874,615. The incremental cost-effectiveness ratio (ICER) for dacomitinib vs afatinib was SEK 461,556 per QALY gained. The ICER of osimertinib vs dacomitinib, where the small QALY gains of the former came at a high additional cost, was SEK 11,444,709. Deterministic and probabilistic sensitivity analyses confirmed the robustness of these results; changes to drug and medical resource use costs and overall survival had the greatest impact on ICER estimates. LIMITATIONS This model is subject to uncertainty associated with extrapolating long-term treatment effects from shorter trial follow-up periods, although this would also be a limitation when using direct comparison or time-dependent hazard ratios. The NMA was limited by the use of indirect comparison, although sensitivity analyses supported the robustness of our findings. CONCLUSIONS Our model demonstrated that dacomitinib is cost-effective for first-line EGFRm NSCLC treatment in Sweden vs afatinib and osimertinib.
Collapse
Affiliation(s)
| | - Peter Gal
- Evidence Synthesis, Modeling & Communication, Evidera, Budapest, Hungary
| | - Ivan Houisse
- Evidence Synthesis, Modeling & Communication, Evidera, Budapest, Hungary
| | - Jasmina I Ivanova
- Global Health Economics and Outcomes Research (Oncology), Pfizer Inc, New York, NY, USA
| | | |
Collapse
|
7
|
Zhang T, Qu R, Chan S, Lai M, Tong L, Feng F, Chen H, Song T, Song P, Bai G, Liu Y, Wang Y, Li Y, Su Y, Shen Y, Sun Y, Chen Y, Geng M, Ding K, Ding J, Xie H. Discovery of a novel third-generation EGFR inhibitor and identification of a potential combination strategy to overcome resistance. Mol Cancer 2020; 19:90. [PMID: 32404161 PMCID: PMC7218543 DOI: 10.1186/s12943-020-01202-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with activating EGFR mutations initially respond to first-generation EGFR inhibitors; however, the efficacy of these drugs is limited by acquired resistance driven by the EGFR T790M mutation. The discovery of third-generation EGFR inhibitors overcoming EGFR T790M and their new resistance mechanisms have attracted much attention. METHODS We examined the antitumor activities and potential resistance mechanism of a novel EGFR third-generation inhibitor in vitro and in vivo using ELISA, SRB assay, immunoblotting, flow cytometric analysis, kinase array, qRT-PCR and tumor xenograft models. The clinical effect on a patient was evaluated by computed tomography scan. RESULTS We identified compound ASK120067 as a novel inhibitor of EGFR T790M, with selectivity over EGFR WT. ASK120067 exhibited potent anti-proliferation activity in tumor cells harboring EGFR T790M (NCI-H1975) and sensitizing mutations (PC-9 and HCC827) while showed moderate or weak inhibition in cells expressing EGFR WT. Oral administration of ASK120067 induced tumor regression in NSCLC xenograft models and in a PDX model harboring EGFR T790M. The treatment of one patient with advanced EGFR T790M-positive NSCLC was described as proof of principle. Moreover, we found that hyperphosphorylation of Ack1 and the subsequent activation of antiapoptotic signaling via the AKT pathway contributed to ASK120067 resistance. Concomitant targeting of EGFR and Ack1 effectively overrode the acquired resistance of ASK120067 both in vitro and in vivo. CONCLUSIONS Our results idenfity ASK120067 as a promising third-generation EGFR inhibitor and reveal for the first time that Ack1 activation as a novel resistance mechanism to EGFR inhibitors that guide to potential combination strategy.
Collapse
Affiliation(s)
- Tao Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Rong Qu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Shingpan Chan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemistry Drug Development, School of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632 China
| | - Mengzhen Lai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| | - Linjiang Tong
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Fang Feng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Hongyu Chen
- Jiangsu Aosaikang Pharmaceutical Co.Ltd (ASK pharm), 699 Kejian Road, Nanjing, 211112 China
| | - Tingting Song
- Jiangsu Aosaikang Pharmaceutical Co.Ltd (ASK pharm), 699 Kejian Road, Nanjing, 211112 China
| | - Peiran Song
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Gang Bai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
| | - Yingqiang Liu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| | - Yanan Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Yan Li
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Yi Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Yanyan Shen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Yiming Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemistry Drug Development, School of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632 China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203 China
| |
Collapse
|
8
|
The Validity and Predictive Value of Blood-Based Biomarkers in Prediction of Response in the Treatment of Metastatic Non-Small Cell Lung Cancer: A Systematic Review. Cancers (Basel) 2020; 12:cancers12051120. [PMID: 32365836 PMCID: PMC7280996 DOI: 10.3390/cancers12051120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
With the introduction of targeted therapies and immunotherapy, molecular diagnostics gained a more profound role in the management of non-small cell lung cancer (NSCLC). This study aimed to systematically search for studies reporting on the use of liquid biopsies (LB), the correlation between LBs and tissue biopsies, and finally the predictive value in the management of NSCLC. A systematic literature search was performed, including results published after 1 January 2014. Articles studying the predictive value or validity of a LB were included. The search (up to 1 September 2019) retrieved 1704 articles, 1323 articles were excluded after title and abstract screening. Remaining articles were assessed for eligibility by full-text review. After full-text review, 64 articles investigating the predictive value and 78 articles describing the validity were included. The majority of studies investigated the predictive value of LBs in relation to therapies targeting the epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) receptor (n = 38). Of studies describing the validity of a biomarker, 55 articles report on one or more EGFR mutations. Although a variety of blood-based biomarkers are currently under investigation, most studies evaluated the validity of LBs to determine EGFR mutation status and the subsequent targeting of EGFR tyrosine kinase inhibitors based on the mutation status found in LBs of NSCLC patients.
Collapse
|
9
|
Wu L, Deng Q, Xu Z, Zhou S, Li C, Li YX. A novel virtual barcode strategy for accurate panel-wide variant calling in circulating tumor DNA. BMC Bioinformatics 2020; 21:127. [PMID: 32245364 PMCID: PMC7118954 DOI: 10.1186/s12859-020-3412-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
Background Hybrid capture-based next-generation sequencing of DNA has been widely applied in the detection of circulating tumor DNA (ctDNA). Various methods have been proposed for ctDNA detection, but low-allelic-fraction (AF) variants are still a great challenge. In addition, no panel-wide calling algorithm is available, which hiders the full usage of ctDNA based ‘liquid biopsy’. Thus, we developed the VBCALAVD (Virtual Barcode-based Calling Algorithm for Low Allelic Variant Detection) in silico to overcome these limitations. Results Based on the understanding of the nature of ctDNA fragmentation, a novel platform-independent virtual barcode strategy was established to eliminate random sequencing errors by clustering sequencing reads into virtual families. Stereotypical mutant-family-level background artifacts were polished by constructing AF distributions. Three additional robust fine-tuning filters were obtained to eliminate stochastic mutant-family-level noises. The performance of our algorithm was validated using cell-free DNA reference standard samples (cfDNA RSDs) and normal healthy cfDNA samples (cfDNA controls). For the RSDs with AFs of 0.1, 0.2, 0.5, 1 and 5%, the mean F1 scores were 0.43 (0.25~0.56), 0.77, 0.92, 0.926 (0.86~1.0) and 0.89 (0.75~1.0), respectively, which indicates that the proposed approach significantly outperforms the published algorithms. Among controls, no false positives were detected. Meanwhile, characteristics of mutant-family-level noise and quantitative determinants of divergence between mutant-family-level noises from controls and RSDs were clearly depicted. Conclusions Due to its good performance in the detection of low-AF variants, our algorithm will greatly facilitate the noninvasive panel-wide detection of ctDNA in research and clinical settings. The whole pipeline is available at https://github.com/zhaodalv/VBCALAVD.
Collapse
Affiliation(s)
- Leilei Wu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinfang Deng
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Ze Xu
- Smartquerier Biomedicine, Shanghai, 201203, China
| | - Songwen Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Chao Li
- Smartquerier Biomedicine, Shanghai, 201203, China. .,Shanghai Center for Bioinformation Technology, Shanghai, 201203, China.
| | - Yi-Xue Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Center for Bioinformation Technology, Shanghai, 201203, China. .,CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
10
|
Abstract
Icotinib is a first-generation inhibitor of epidermal growth factor receptor, which has been approved by the Chinese National Medical Products Administration, for the treatment of non-small cell lung cancer with epidermal growth factor receptor sensitive mutations. In addition, icotinib also shows moderate activity in other solid tumors driven by epidermal growth factor receptor, including non-small cell lung cancer with epidermal growth factor receptor rare non-resistant mutations, and esophageal cancer with epidermal growth factor receptor amplification or overexpression. This article reviews the efficacy of icotinib in different solid tumors with different epidermal growth factor receptor alterations.
Collapse
|
11
|
Agajanian S, Oluyemi O, Verkhivker GM. Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations. Front Mol Biosci 2019; 6:44. [PMID: 31245384 PMCID: PMC6579812 DOI: 10.3389/fmolb.2019.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approaches, including tree based methods, random forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide sequences for classification of cancer driver mutations was initially explored by employing label encoding, one hot encoding, and embedding to preprocess the DNA information. These classifiers were benchmarked against their tree-based alternatives in order to evaluate the performance on a relative scale. We then integrated DNA-based scores generated by CNN with various categories of conservational, evolutionary and functional features into a generalized random forest classifier. The results of this study have demonstrated that CNN can learn high level features from genomic information that are complementary to the ensemble-based predictors often employed for classification of cancer mutations. By combining deep learning-generated score with only two main ensemble-based functional features, we can achieve a superior performance of various machine learning classifiers. Our findings have also suggested that synergy of nucleotide-based deep learning scores and integrated metrics derived from protein sequence conservation scores can allow for robust classification of cancer driver mutations with a limited number of highly informative features. Machine learning predictions are leveraged in molecular simulations, protein stability, and network-based analysis of cancer mutations in the protein kinase genes to obtain insights about molecular signatures of driver mutations and enhance the interpretability of cancer-specific classification models.
Collapse
Affiliation(s)
- Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Odeyemi Oluyemi
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|