1
|
Olubi O, Obilana A, Tshilumbu N, Fester V, Jideani V. Physicochemical and Functional Properties of Citrullus mucosospermus, Citroides, and Moringa oleifera Seeds' Hydrocolloids. Foods 2024; 13:1131. [PMID: 38611435 PMCID: PMC11011541 DOI: 10.3390/foods13071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Hydrocolloids form gel-like structures when dispersed in water and have garnered significant attention for their diverse applications in food, pharmaceuticals, and other industries. The extraction of hydrocolloids from natural sources, such as seeds, presents an intriguing avenue due to the potential diversity in composition and functionality. Utilising seeds from Citrullus lanatus mucosospermus, lanatus citroides, and Moringa aligns with the growing demand for natural and sustainable ingredients in various industries. This research investigated hydrocolloids extracted from Citrullus mucosospermus (CMS), lanatus citroides, and Moringa oleifera seeds, highlighting their versatile physicochemical and functional attributes. Hydrocolloids were extracted from the seeds and subjected to analysis of their proximate composition, particle size distribution, and interfacial tension using the hot water extraction method. Protein content variation was observed among the raw oilseed (CMS, Citroides, and Moringa oleifera) flours. The protein content of the hydrocolloids surpassed that of raw oilseeds, significantly enhancing the amino acid profile. Furthermore, the hydrocolloid ash contents ranged from 4.09% to 6.52% w/w dry weight, coupled with low fat levels. The particle size distribution revealed predominantly fine particles with a narrow size distribution. All three hydrocolloids demonstrated remarkable oil- and water-holding capacities, highlighting their suitability for efficient stabilisation and emulsification in food formulations. These findings suggest the potential utilisation of these hydrocolloids as valuable ingredients across a spectrum of applications, encompassing food, pharmaceuticals, and industry, thus contributing to the development of sustainable and functional products. The unique attributes presented herein mark a noteworthy advancement in the understanding and application of novel hydrocolloids from CMS, Citroides, and Moringa oleifera.
Collapse
Affiliation(s)
- Olakunbi Olubi
- Department of Food Science and Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa; (O.O.); (A.O.)
| | - Anthony Obilana
- Department of Food Science and Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa; (O.O.); (A.O.)
| | - Nsenda Tshilumbu
- Flow Process & Rheology Centre, Faculty of Engineering & the Built Environment, Cape Peninsula University of Technology, Cape Town 8000, South Africa; (N.T.); (V.F.)
| | - Veruscha Fester
- Flow Process & Rheology Centre, Faculty of Engineering & the Built Environment, Cape Peninsula University of Technology, Cape Town 8000, South Africa; (N.T.); (V.F.)
| | - Victoria Jideani
- Department of Food Science and Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa; (O.O.); (A.O.)
| |
Collapse
|
2
|
Díaz-Cervantes MD, Ramos-Ramírez EG, Gimeno-Seco M, Salazar-Montoya JA. Supercritical CO2 Extraction of oil from Chan (Hyptis suaveolens (L.) Poit) Seeds and its Physicochemical Characterization, Spectroscopy and Nutritional Analysis. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Rao V, Poonia A. Citrullus colocynthis (bitter apple): bioactive compounds, nutritional profile, nutraceutical properties and potential food applications: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [DOI: 10.1186/s43014-022-00118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AbstractHerbal remedies and related foods provide healing properties for a range of diseases, resulting in a higher standard of living. Bitter apple is extremely beneficial due to its bioactive and nutraceutical compounds. Increasing awareness among consumers across the world about this unique fruit’s properties may provide huge opportunities for the supplier of herbal products as well as their use in the food industry. It has significant applications in the field of food technology. This review focused on the important features of bitter apple mainly, bioactive compounds, their mode of action, medical applications, chemical characteristics, chemical compounds, and the latest research on the pharmacological interventions of bitter apple extracts. This review also highlights the potential use of bitter apples in the food industry as well as their application in nanotechnology for the formation of nanoparticles.
Graphical Abstract
Collapse
|
4
|
Olubi O, Felix-Minnaar JV, Jideani VA. Physicochemical, Mineral and Sensory Characteristics of Instant Citrullus lanatus mucosospermus (Egusi) Soup. Foods 2021; 10:foods10081817. [PMID: 34441594 PMCID: PMC8391701 DOI: 10.3390/foods10081817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
Defatted egusi flour offers a food option high in protein and essential micronutrients. An instant processing method was adopted in a ready-to-eat instant soup using egusi grit, hydrocolloid, and defatted flour. A D-optimal quadratic mixture model was used to study the effect of the independent variables (grit, flour, and hydrocolloid) qualities. The quadratic model was adequate to navigate the design space for taste and appearance. The numerical optimization for appearance and taste of instant soup (IES) was used to obtain the optimal soup mix of 10 g of hydrocolloid, 57.2 of defatted flour and 17 g of grits. Sixteen trace and five major mineral elements were found in the egusi soup, with a high concentration of phosphorus (1220.4, 1326.2 and 1277.9 mg/100 g), potassium (1220.4, 1326.2 and 1277.9 mg/100 g), magnesium (822.2, 905.3 and 863.70 mg/100 g), calcium (172.3, 190.9 and 183.4 mg/100 g) and iron (53.7, 57.5 and 29.5 mg/100 g), and for instant egusi soups from boiled egusi grit (IESBG), instant egusi grit from spherified grit (IESSG) and instant egusi grit from extruded grit (IESEG), respectively. The amino acid profile of instant egusi soup offers all essential amino acids necessary to nourish the body. Phosphorus content was significantly (p ≤ 0.05) high across the three soups: 1742, 1836 and 1838 mg/100 g for IESBG, IESSG, and IESEG, respectively; IESSG and IESEG were significantly (p ≤ 0.05) higher in minerals when compared with IESBG. Instant egusi soup differed significantly (p ≤ 0.05) in lightness (L*), while the redness (a*) and yellowness (b*) did not vary significantly.
Collapse
|
5
|
Al-Bachir M, Koudsi Y. Compositional characteristics of cherry kernel oil as influenced by gamma irradiation and storage periods. FOOD SCI TECHNOL INT 2020; 27:326-333. [PMID: 32915658 DOI: 10.1177/1082013220956739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This research work was undertaken to evaluate the physicochemical parameters of oil from the cherry kernel non-irradiated and irradiated at 3 and 6 kGy of gamma irradiation for two storage periods (0 and 12 months). The acid value, peroxide value, thiobarbituric acid reactive substances value, iodine value, saponification value refractive index (peroxide value), and the color parameters of cherry kernel oils were determined. The results indicated that the extracted cherry kernel oils were liquid at room temperature with color varying from light yellow to deep red. The physicochemical properties of cherry kernel oils including acid value, peroxide value, thiobarbituric acid reactive substances, iodine value, saponification value, and refractive index values were 1.19 mg KOH g-1, 9.01 meq2 kg-1, 0.014 mg MDA kg-1, 99.48 KOH g-1 I2 100 g-1, 194.50 mg KOH g-1, and 1.472, respectively. Generally, gamma irradiation doses and storage time increased acid value, peroxide value, thiobarbituric acid reactive substances, and refractive index value of cherry kernel oils, whereas no significant (p > 0.05) change due to irradiation was recorded in iodine value, saponification value, and in color parameter (L*, a*, b*, and ΔE values) of cherry kernel oils. However, the properties of cherry kernel oils revealed that the cherry kernel is a good source of oil which could be used for industrial purposes.
Collapse
Affiliation(s)
- M Al-Bachir
- Department of Radiation Technology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Y Koudsi
- Faculty of Science, Damascus University, Damascus, Syria
| |
Collapse
|
6
|
Giwa SO, Akanbi TO. Mechanization of melon processing and novel extraction technologies: A short review. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Jamila dos Santos A, Confortin TC, Todero I, Rodrigues AS, Ribeiro SR, Sasso SR, Canabarro NI, Wagner R, Cichoski AJ, Mazutti MA, da Rosa CS. Use of compressed fluids in the recovery of pecan nut cake oil: Influence of extraction conditions on yield and extract quality. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Du KZ, Sun AL, Yan C, Liang C, Qi L, Wang C, Yang R, Cui Y, Shang Y, Li J, Chang YX. Recent advances of green pretreatment techniques for quality control of natural products. Electrophoresis 2020; 41:1469-1481. [PMID: 32524626 DOI: 10.1002/elps.202000084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
A few advancing technologies for natural product analysis have been widely proposed, which focus on decreasing energy consumption and developing an environmentally sustainable manner. These green sample pretreatment and analysis methods following the green Analytical Chemistry (GAC) criteria have the advantage of improving the strategy of chemical analyses, promoting sustainable development to analytical laboratories, and reducing the negative effects of analysis experiments on the environment. A few minimized extraction methodologies have been proposed for replacing the traditional methods in the quality evaluation of natural products, mainly including solid-phase microextraction (SPME) and liquid phase microextraction (LPME). These procedures not only have no need for large numbers of samples and toxic reagent, but also spend a small amount of extraction and analytical time. This overview aims to list out the main green strategies on the application of quality evaluation and control for natural products in the past 3 years.
Collapse
Affiliation(s)
- Kun-Ze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - A-Li Sun
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chaozhuo Yan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chunxiao Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lina Qi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chenhong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Rui Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yan Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ye Shang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yan-Xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
9
|
Juvvi P, Selvi MK, Debnath S. Effect of vacuum frying on quality attributes of pear (
Pyrus communis
L) chips and blended oil. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Praneeth Juvvi
- University of Mysore Mysore India
- Department of Technology Scale‐up CSIR‐Central Food Technological Research Institute Mysore India
| | - Moorthy Karthika Selvi
- Department of Lipid Science CSIR‐Central Food Technological Research Institute Mysore India
| | - Sukumar Debnath
- Department of Technology Scale‐up CSIR‐Central Food Technological Research Institute Mysore India
| |
Collapse
|
10
|
Teixeira GL, Maciel LG, Mazzutti S, Gonçalves CB, Ferreira SRS, Block JM. Composition, thermal behavior and antioxidant activity of pracaxi (Pentaclethra macroloba) seed oil obtained by supercritical CO2. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Extraction of Galphimines from Galphimia glauca with Supercritical Carbon Dioxide. Molecules 2020; 25:molecules25030477. [PMID: 31979179 PMCID: PMC7037395 DOI: 10.3390/molecules25030477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
The anti-depressive and anxiolytic effect of galphimine B (isolated from Galphimia glauca) has been demonstrated by researchers. Therefore, it is necessary to explore extraction techniques that produce materials with adequate quality for pharmaceutical applications. In this work, supercritical extractions of galphimines from Galphimia glauca were performed in the presence of carbon dioxide. Pressure, temperature, particle diameter, and flow rate effects were examined to explore the conditions with the highest yield and the concentration profile of galphimines in the studied interval. The identification of the nor-seco triterpenoids and galphimine B and E was carried out by HPLC analyses. The mathematical modeling of the extraction curves was attained by the approaches proposed by Sovová and Papamichail et al. According to results, the highest yield 2.22% was obtained at 323.15 K, 326 μm, 3 L/min, and 33.75 MPa. Meanwhile, the content of galphimine B in the extract was, on average, 19.5 mg·g−1.
Collapse
|
12
|
Muangrat R, Jirarattanarangsri W. Physicochemical properties and antioxidant activity of oil extracted from Assam tea seeds (Camellia sinensisvar.assamica) by supercritical CO2extraction. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rattana Muangrat
- Division of Food Process Engineering Faculty of Agro‐Industry Chiang Mai University Chiang Mai Thailand
- Food Drying Technology Research Unit Faculty of Agro‐Industry Chiang Mai University Chiang Mai Thailand
| | - Wachira Jirarattanarangsri
- Division of Food Science and Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
13
|
Muangrat R, Pongsirikul I. Recovery of spent coffee grounds oil using supercritical CO2: Extraction optimisation and physicochemical properties of oil. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1580771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rattana Muangrat
- Division of Food Process Engineering, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Israpong Pongsirikul
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|