1
|
Fan L, Zhang Y, Huang S, Chen J, Wang J, Meng F, Zhang J, Xue Q. Effects of multiple treatments with stem cell therapy in patients with multiple sclerosis. Mult Scler Relat Disord 2024; 92:105944. [PMID: 39442287 DOI: 10.1016/j.msard.2024.105944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/29/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This study was to evaluate the effectiveness of stem cell therapies (AHSCT: autologous hematopoietic stem cell transplantation and MSCs: mesenchymal stem cells) compared to non-stem cell therapies in multiple sclerosis (MS) patients. DESIGN Clinical trials to investigate the therapeutic effects of stem cells therapy was searched by PubMed, Embase, Web of Science, and the Cochrane Library. The Cochrane Risk of Bias Assessment Tool and data analysis software will be applied. RESULTS Data were collected between the earliest available date and August 2023. Ten studies were included, with a sample size of 5288 used in the studies. Results showed that human umbilical cord-derived mesenchymal stem cells reduced the Annualized Relapse Rate (SUCRA: 70.9 %) and Expanded Disability Status Scale (SUCRA: 77.1 %) of MS patients, AHSCT reduced mortality rate (SUCRA: 69.8 %), autologous peripheral blood stem cell transplantation (APBSCT) reduced recurrence rate (SUCRA: 86.7 %) and improved No Evidence of Disease Activity-3 (SUCRA: 92.8 %). CONCLUSION At present, AHSCT and MSCs have been demonstrated to reduce the recurrence rate of multiple sclerosis and improve disability, particularly in the case of hUC-MSCs. However, APBSCT and AHSCT in the context of the NEDA-3 criteria have not yielded the desired outcomes.
Collapse
Affiliation(s)
- Liding Fan
- Jining Medical University, Second Clinical Medical College, Shandong, 272067, China
| | - Yunfei Zhang
- Jining Medical University, School of Clinical Medicine, Shandong, 272067, China
| | - Shuo Huang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123, China
| | - Jie Chen
- Jining Medical University, School of Clinical Medicine, Shandong, 272067, China
| | - Junying Wang
- Jining Medical University, School of Clinical Medicine, Shandong, 272067, China
| | - Furen Meng
- Jining Medical University, School of Clinical Medicine, Shandong, 272067, China
| | - Jiarui Zhang
- Jining Medical University, Second Clinical Medical College, Shandong, 272067, China
| | - Qingjie Xue
- Jining Medical University, Second Clinical Medical College, Shandong, 272067, China.
| |
Collapse
|
2
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
3
|
Pan Y, Wang S, Li P, Yue F, Zhang Y, Pan B, Liu X. Apoptotic investigation of brain tissue cells in dogs naturally infected by canine distemper virus. Virol J 2021; 18:165. [PMID: 34384430 PMCID: PMC8359588 DOI: 10.1186/s12985-021-01635-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Background Canine distemper caused by canine distemper virus that belongs to the Morbillivirus genus of the Paramyxoviridae family is still a global epidemic significant infectious disease, especially in pet dogs in China and serious harm to the development of the dog industry. It has been known that apoptosis caused by the canine distemper virus can show in culture cells, lymphoid tissues, and the cerebellum. However, its occurrence in brain tissue cells remains unclear. To investigate the relationship among canine distemper infecting brain tissues, apoptosis in brain tissue cells, and demyelinating pathogenesis was investigated. Methods 16 naturally infected dogs that exhibited clinical signs of CD and tested positive for the anti-CDV monoclonal antibody and six healthy dogs that served as the control, were used in the research. Brain specimens were divided into the cerebrum, brain stem, and cerebellum embedded in paraffin and made the sections respectively. Approximately 5 µm-thick sections were stained by hematoxylin–eosin, methyl green pyronin, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling technique, and immunohistochemistry. CDV nucleocapsid protein was detected by immune streptavidin-biotinylated peroxidase complex. Results Alterations in the brain tissues of CDV-infected dogs involved both various cells and nerve fibers. CDV had varying degrees of cytotropism to all brain tissue cells; apoptosis also occurred in all brain cells, especially in the endothelia of cerebral vessels, astrocytes, oligodendrocytes, and ependymal cells, the more serious infection, the more obvious apoptosis. Serious infections also involved the pyramidal and Purkinje cells. The nervous fibers exhibited demyelinating lesions (showed small multifocal vacuole), and some axonal neuron atrophy gradually disappeared (formed large vacuole). Conclusions Apoptosis in brain tissue cells was mainly related to the propagation path and cytotropism of CDV. The apoptosis of astrocytes, oligodendrocytes, and some neurons may play a significant role in the demyelinating pathogenesis in dogs with acute canine distemper. A lot of diverse nervous signs shown in the clinic may be related to different neuron apoptosis.
Collapse
Affiliation(s)
- Yaoqian Pan
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Shuai Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Feng Yue
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Yanfang Zhang
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China
| | - Bo Pan
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, 57069, USA.
| | - Xingyou Liu
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
4
|
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, Pathak Y, Marofi F, Shamlou S, Hassanzadeh A. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12:192. [PMID: 33736695 PMCID: PMC7971361 DOI: 10.1186/s13287-021-02265-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Over recent years, mesenchymal stem/stromal cells (MSCs) and their potential biomedical applications have received much attention from the global scientific community in an increasing manner. Firstly, MSCs were successfully isolated from human bone marrow (BM), but in the next steps, they were also extracted from other sources, mostly from the umbilical cord (UC) and adipose tissue (AT). The International Society for Cellular Therapy (ISCT) has suggested minimum criteria to identify and characterize MSCs as follows: plastic adherence, surface expression of CD73, D90, CD105 in the lack of expression of CD14, CD34, CD45, and human leucocyte antigen-DR (HLA-DR), and also the capability to differentiate to multiple cell types including adipocyte, chondrocyte, or osteoblast in vitro depends on culture conditions. However, these distinct properties, including self-renewability, multipotency, and easy accessibility are just one side of the coin; another side is their huge secretome which is comprised of hundreds of mediators, cytokines, and signaling molecules and can effectively modulate the inflammatory responses and control the infiltration process that finally leads to a regulated tissue repair/healing or regeneration process. MSC-mediated immunomodulation is a direct result of a harmonic synergy of MSC-released signaling molecules (i.e., mediators, cytokines, and chemokines), the reaction of immune cells and other target cells to those molecules, and also feedback in the MSC-molecule-target cell axis. These features make MSCs a respectable and eligible therapeutic candidate to be evaluated in immune-mediated disorders, such as graft versus host diseases (GVHD), multiple sclerosis (MS), Crohn's disease (CD), and osteoarthritis (OA), and even in immune-dysregulating infectious diseases such as the novel coronavirus disease 2019 (COVID-19). This paper discussed the therapeutic applications of MSC secretome and its biomedical aspects related to immune-mediated conditions. Sources for MSC extraction, their migration and homing properties, therapeutic molecules released by MSCs, and the pathways and molecular mechanisms possibly involved in the exceptional immunoregulatory competence of MSCs were discussed. Besides, the novel discoveries and recent findings on immunomodulatory plasticity of MSCs, clinical applications, and the methods required for their use as an effective therapeutic option in patients with immune-mediated/immune-dysregulating diseases were highlighted.
Collapse
Affiliation(s)
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| | | | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mesenchymal Stem Cells in Multiple Sclerosis: Recent Evidence from Pre-Clinical to Clinical Studies. Int J Mol Sci 2020; 21:ijms21228662. [PMID: 33212873 PMCID: PMC7698327 DOI: 10.3390/ijms21228662] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. Nowadays, available therapies for MS can help to manage MS course and symptoms, but new therapeutic approaches are required. Stem cell therapy using mesenchymal stem cells (MSCs) appeared promising in different neurodegenerative conditions, thanks to their beneficial capacities, including the immunomodulation ability, and to their secretome. The secretome is represented by growth factors, cytokines, and extracellular vesicles (EVs) released by MSCs. In this review, we focused on studies performed on in vivo MS models involving the administration of MSCs and on clinical trials evaluating MSCs administration. Experimental models of MS evidenced that MSCs were able to reduce inflammatory cell infiltration and disease score. Moreover, MSCs engineered to express different genes, preconditioned with different compounds, differentiated or in combination with other compounds also exerted beneficial actions in MS models, in some cases also superior to native MSCs. Secretome, both conditioned medium and EVs, also showed protective effects in MS models and appeared promising to develop new approaches. Clinical trials highlighted the safety and feasibility of MSC administration and reported some improvements, but other trials using larger cohorts of patients are needed.
Collapse
|