1
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
Yukhajon P, Somboon T, Sansuk S. Enhanced adsorption and colorimetric detection of tetracycline antibiotics by using functional phosphate/carbonate composite with nanoporous network coverage. J Environ Sci (China) 2023; 126:365-377. [PMID: 36503763 DOI: 10.1016/j.jes.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/17/2023]
Abstract
This work presents efficient tetracycline (TC) antibiotics adsorption using a functional porous phosphate/carbonate composite (PCC). The PCC was fabricated by anion-exchange of phosphate on the surface of vaterite-phase calcium carbonate particle scaffolds. The PCC, having dense nanoporous network coverage with large surface area and pore volume, exhibited excellent TC adsorption in solution. Its adsorption isotherm fitted well to the Freundlich model, with a maximum adsorption capacity of 118.72 mg/g. The adsorption process was spontaneous, endothermic, and followed pseudo-second-order kinetics. From the XPS analysis, the hydrogen bonding and surface complexation were the key interactions in the process. In addition, a colorimetric TC detection method was developed considering its complexation with phosphate ions, originating from PCC dissolution, during adsorption. The method was used to detect TC in mg/L concentrations in water samples. Thus, the multifunctional PCC exhibited potential for use in TC removal and environmental remediation.
Collapse
Affiliation(s)
- Pratchayaporn Yukhajon
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Titikan Somboon
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Sira Sansuk
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
3
|
Kovo AS, Alaya-Ibrahim S, Abdulkareem AS, Adeniyi OD, Egbosiuba TC, Tijani JO, Saheed M, Okafor BO, Adeyinka YS. Column adsorption of biological oxygen demand, chemical oxygen demand and total organic carbon from wastewater by magnetite nanoparticles-zeolite A composite. Heliyon 2023; 9:e13095. [PMID: 36793965 PMCID: PMC9922975 DOI: 10.1016/j.heliyon.2023.e13095] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Herein, magnetite nanoparticles (NPs), zeolite A and magnetite-zeolite A (MAGZA) composite was developed by green methods. The produced nanomaterials were characterized and the effect of process parameters such as flow rate, adsorbent bed height and adsorbate inlet concentration was evaluated for the removal of biological oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) in a column. The characterization results demonstrated the successful synthesis of magnetite NPs, zeolite A and MAGZA composite. The performance of the MAGZA composite in the fixed-bed column was superior to zeolite A and magnetite NPs. The parametric influence indicates that an increase in bed height and a decrease in the flow rate and inlet adsorbate concentration improved the performance of the adsorption column. The adsorption column demonstrated maximum performance at a flow rate (4 mL/min), bed height (5 cm) and inlet adsorbate concentration (10 mg/L). Under these conditions, the highest percent removal of BOD, COD and TOC were 99.96, 99.88 and 99.87%. Thomas and Yoon-Nelson's model suitably fitted the breakthrough curves. After five reusability cycles, the MAGZA composite demonstrated removal percent of BOD (76.5%), COD (55.5%) and TOC (64.2%). The produced MAGZA composite effectively removed BOD, COD and TOC from textile wastewater in a continuous operating mode.
Collapse
Affiliation(s)
- Abdulsalami Sanni Kovo
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Sherifat Alaya-Ibrahim
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Ambali Saka Abdulkareem
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Olalekan David Adeniyi
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Titus Chinedu Egbosiuba
- Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli Campus, Anambra State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Corresponding author. Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli Campus, Anambra State, Nigeria.
| | - Jimoh Oladejo Tijani
- Chemistry Department, Federal University of Technology, Minna, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Mustapha Saheed
- Chemistry Department, Federal University of Technology, Minna, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Blessing Onyinye Okafor
- Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli Campus, Anambra State, Nigeria
| | - Yusuff Sikiru Adeyinka
- Chemical and Petroleum Engineering Department, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
4
|
Duan T, Qian B, Wang Y, Zhao Q, Xie F, Zou H, Zhou X, Song Y, Sheng Y. Preparation of CaCO3:Eu3+@SiO2 and its application on adsorption of Tb3+. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
El-Denglawey A, Mubarak MF, Selim H. Tertiary Nanocomposites of Metakaolinite/Fe3O4/SBA-15 Nanocomposite for the Heavy Metal Adsorption: Isotherm and Kinetic Study. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05690-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Manyangadze M, Chikuruwo NMH, Narsaiah TB, Chakra CS, Charis G, Danha G, Mamvura TA. Adsorption of lead ions from wastewater using nano silica spheres synthesized on calcium carbonate templates. Heliyon 2020; 6:e05309. [PMID: 33204869 PMCID: PMC7649267 DOI: 10.1016/j.heliyon.2020.e05309] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 10/15/2020] [Indexed: 12/03/2022] Open
Abstract
Lead is a heavy metal that is bio accumulative and non-biodegradable that poses a threat to our health when it exists in excess in our bloodstream. It has found its way into wastewater from mostly chemical industrial processes. In this article, we investigated the adsorption and hence removal of lead (II) ions from wastewater in order to purify it for re-use in industrial processes or for plant and animal use. We synthesized nano silica hollow spheres (NSHS) and used them as adsorbents to remove lead ions from wastewater. When we characterized the NSHS using X-Ray diffraction, the amorphous nature of silica was evident with average crystal size of 39.5 nm. Scanning electron microscopy was used to determine the morphology of the adsorbent and the particles were found to be spherical in shape within a size range of 100–200 nm. Thermogravimetric analysis was used to determine the mass loss of NSHS which was ~2% at 800 °C. Our experimental results from adsorption studies showed that there was a linear relationship between temperature (27–60 °C) and adsorption efficiency and an inverse relationship between initial metal concentration (50–300 mg/L) and adsorption efficiency. At a maximum temperature of 60 °C and maximum initial metal concentration of 300 mg/L, the adsorption capacity was 200 mg/g and 262 mg/g, respectively while the adsorption efficiency was 99.6% and 87.4%, respectively. Our equilibrium and thermodynamic results revealed that the process was better modelled by the Langmuir adsorption isotherm (qmax = 266.89 mg/g and b = 0.89 L/mg). The adsorption process was both endothermic (ΔH = 97 kJ/mol) and spontaneous (ΔG = -22 kJ/mol). We can conclude that we were able to successfully synthesize NSHS, use them to remove lead (II) ions and the produced NSHS have a capacity that is higher than most other adsorbents investigated by other researchers.
Collapse
Affiliation(s)
- Milton Manyangadze
- Chemical and Process Systems Engineering Department, Harare Institute of Technology, Harare, Zimbabwe
| | - Nyaradzai M H Chikuruwo
- Industial and Manufacturing Engineering Department, Harare Institute of Technology, Harare, Zimbabwe
| | - T Bala Narsaiah
- Institute of Chemical Sciences and Technology, Jawaharlal Nehru Technological University, Hyderabad, India
| | - Ch Shilpa Chakra
- Institute of Chemical Sciences and Technology, Jawaharlal Nehru Technological University, Hyderabad, India
| | - Gratitude Charis
- Department of Chemical, Materials and Metallurgical Engineering, College of Engineering and Technology, Botswana International University of Science and Technology, Plot 10071, Boseja Ward, Private Bag 16 Palapye, Botswana
| | - Gwiranai Danha
- Department of Chemical, Materials and Metallurgical Engineering, College of Engineering and Technology, Botswana International University of Science and Technology, Plot 10071, Boseja Ward, Private Bag 16 Palapye, Botswana
| | - Tirivaviri A Mamvura
- Department of Chemical, Materials and Metallurgical Engineering, College of Engineering and Technology, Botswana International University of Science and Technology, Plot 10071, Boseja Ward, Private Bag 16 Palapye, Botswana
| |
Collapse
|
7
|
Kurshanov DA, Khavlyuk PD, Baranov MA, Dubavik A, Rybin AV, Fedorov AV, Baranov AV. Magneto-Fluorescent Hybrid Sensor CaCO 3-Fe 3O 4-AgInS 2/ZnS for the Detection of Heavy Metal Ions in Aqueous Media. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4373. [PMID: 33008133 PMCID: PMC7579003 DOI: 10.3390/ma13194373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Heavy metal ions are not subject to biodegradation and could cause the environmental pollution of natural resources and water. Many of the heavy metals are highly toxic and dangerous to human health, even at a minimum amount. This work considered an optical method for detecting heavy metal ions using colloidal luminescent semiconductor quantum dots (QDs). Over the past decade, QDs have been used in the development of sensitive fluorescence sensors for ions of heavy metal. In this work, we combined the fluorescent properties of AgInS2/ZnS ternary QDs and the magnetism of superparamagnetic Fe3O4 nanoparticles embedded in a matrix of porous calcium carbonate microspheres for the detection of toxic ions of heavy metal: Co2+, Ni2+, and Pb2+. We demonstrate a relationship between the level of quenching of the photoluminescence of sensors under exposure to the heavy metal ions and the concentration of these ions, allowing their detection in aqueous solutions at concentrations of Co2+, Ni2+, and Pb2+ as low as ≈0.01 ppm, ≈0.1 ppm, and ≈0.01 ppm, respectively. It also has importance for application of the ability to concentrate and extract the sensor with analytes from the solution using a magnetic field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexander V. Baranov
- Center of Information Optical Technology, ITMO University, 49 Kronverksky Prospekt, 197101 St. Petersburg, Russia; (D.A.K.); (P.D.K.); (M.A.B.); (A.D.); (A.V.R.); (A.V.F.)
| |
Collapse
|
8
|
Lin PY, Wu HM, Hsieh SL, Li JS, Dong C, Chen CW, Hsieh S. Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal. CHEMOSPHERE 2020; 254:126903. [PMID: 32957296 DOI: 10.1016/j.chemosphere.2020.126903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
We used discarded oyster shells to prepare vaterite calcium carbonate microparticles and explored the removal effects and the underlying mechanism toward several heavy metal ions. The removal efficiency for each ion type was: Pb2+ (99.9%), Cr3+ (99.5%), Fe3+ (99.3%), and Cu2+ (57.1%). With the exception of Cu2+, vaterite calcium carbonate particles exhibited excellent removal performance on all tested heavy metal ions, with exceptional results for Pb2+. The factor affecting the removal efficiency of heavy metal ions is shown to involve an ion exchange reaction between calcium and the heavy metal ions resulting in recrystallization. Vaterite calcium carbonate particles prepared by this method have the advantage of low price, easy synthesis, and reduction of environmental waste. Thus, this procedure for synthesizing vaterite CaCO3 provides an environmentally responsible method for preparing materials that can be economically incorporated into common consumer products such as household drinking water filtration systems.
Collapse
Affiliation(s)
- Pei-Ying Lin
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung, 80424, Taiwan
| | - Hao-Ming Wu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, 2 Zhongzheng 1st Rd., Kaohsiung, 80284, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Rd., Kaohsiung, 81157, Taiwan
| | - Jun-Sian Li
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung, 80424, Taiwan
| | - Chengdi Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung, 80424, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung, 80708, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung, 80708, Taiwan.
| |
Collapse
|
9
|
Fathy M, Selim H, Shahawy AEL. Chitosan/MCM-48 nanocomposite as a potential adsorbent for removing phenol from aqueous solution. RSC Adv 2020; 10:23417-23430. [PMID: 35520349 PMCID: PMC9054931 DOI: 10.1039/d0ra02960b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/07/2020] [Indexed: 11/21/2022] Open
Abstract
A new hybrid mesoporous nanocomposite (CMCM-48) based on chitosan and silica MCM-48 was considered as a potential adsorbent for removing phenol from aqueous solutions (toxic liquid waste) in a batch process. The new composite adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and nitrogen adsorption–desorption isotherms. The adsorption isotherm studies were analyzed using linear and nonlinear Langmuir, Freundlich and Dubinin–Radushkevich models for the optimum conditions when the initial phenol concentration, pH, adsorption temperature and time were 10–500 mg L−1, 3–10, 25.5 °C and 300 min, respectively. It was revealed that the experimental results agree well with the Dubinin–Radushkevich model, i.e. the correlation coefficient R2 was 0.983085. The adsorption kinetics was modeled with linear and nonlinear pseudo-first-order, pseudo-second-order and intra particle diffusion kinetic models. The pseudo-second-order model was the best for describing the adsorption process with a correlation coefficient R2 = 0.99925. The stability of the equilibrium data was studied for a phenol sorbent with a maximum adsorption capacity of 149.25 mg g−1. The results verified that the synthesized CMCM-48 was an efficient adsorbent for removing phenol from aqueous solutions. A new hybrid mesoporous nanocomposite (CMCM-48) based on chitosan and silica MCM-48 was considered as a potential adsorbent for removing phenol from aqueous solutions (toxic liquid waste) in a batch process.![]()
Collapse
Affiliation(s)
- Mahmoud Fathy
- Department of Petroleum Application
- Core Lab Analysis Center
- Egyptian Petroleum Research Institute
- Nasr City P.B. 11727
- Egypt
| | - Hanaa Selim
- Department of Analysis and Evaluation
- Central Lab
- Egyptian Petroleum Research Institute
- Nasr City P.B. 11727
- Egypt
| | - Abeer E. L. Shahawy
- Department of Civil Engineering
- Faculty of Engineering
- Suez Canal University
- Ismailia
- Egypt
| |
Collapse
|