1
|
Klichkhanov NK, Suleimanova MN. Chemical Composition and Therapeutic Effects of Several Astragalus Species (Fabaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:172-186. [PMID: 39128957 DOI: 10.1134/s0012496624701096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
The review integrates information on the component composition and biological activity of some Astragalus L. (Fabaceae) species from studies reported over the past 5-7 years. The aerial and underground parts of 34 Astragalus species contain triterpene saponins, flavonoids, polysacharides, tannins, free organic acids, higher fatty acids, vitamins, trace elements, and other constituents. Among the Astragalus species, A. membranaceus (Fisch.) Bunge is the best studied in terms of component composition and biological activity. Anti-inflammatory, immunomodulatory, antioxidant, anticancer, cardioprotective, and hepathoprotective activities have been experimentally detected in total bioactive substances, fractions, and individual compounds extracted from various parts of A. membranaceus and A. membranaceus var. mongholicus in vitro and in vivo. The composition and biological effects of other Astragalus species are still poorly understood. The review summarizes the recent advances in studying new compounds extracted from Astragalus species and their biological activities.
Collapse
|
2
|
Abdallah WE, Abdelshafeek KA, Elsayed WM, AbdelMohsen MM, Salah NA, Hassanein HD. Phytochemical and biological investigation of Astragalus Caprinus L. BMC Complement Med Ther 2024; 24:294. [PMID: 39090617 PMCID: PMC11295436 DOI: 10.1186/s12906-024-04484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND cultivated and wild plants are used to treat different ailments. The Astragalus genus is found in temperate and dry climates; thus, it is found in Egypt and the arab world. Astragalus caprinus has a good amount of bioactive chemicals, which may help explain its therapeutic effects in reducing the risk of consequences from disease. METHOD The phytochemical investigation of the herb and roots of Astragalus caprinus L. included the analytical characterization for the petroleum ether components by GC/MS, unsaponifiable matter (unsap. fraction), and fatty acids (FAME) investigation by GLC analysis. Main flavonoids were chromatographically isolated from ethyl acetate and n-butanol extracts. In vitro antimicrobial activity has been tested against the Gram-positive bacteria Staphylococcus aureus and Streptococcus mutans for different plant extracts, the Gram-negative bacteria Pseudomonas aeruginosa and Klebsiella pneumonia, the fungus Candida albicans and Aspergillus niger, and the Escherichia coli bacterium. Metabolite cytotoxicity was examined using the MTT assay against HepG-2 (human liver carcinoma) and MCF-7 (breast carcinoma). RESULTS Identifying the important components of the herb and root petroleum ether extracts was achieved. Using column chromatography, luteolin, cosmosiin (apigenin-7-O-glucoside), and cynaroside (luteolin-7-O-glucoside) were separated and identified using UV, NMR, and Mass Spectroscopy. Root extracts displayed potential antimicrobial activity against most of the tested pathogens. Both extracts (herb and roots) were active against the MCF-7 cell line and HepG-2 cell line with IC50 62.5 ± 0.64 and 72.4 ± 2.3 µg/ml, and 75.9 ± 2.5 and 96.8 ± 4.2 µg/ml, respectively. CONCLUSION Astragalus caprinus seems to be a promising source of bioactive compounds that could potentially aid in preventing disease complications and address common health issues in developing countries. Moreover, the various parts of this plant could be utilized as natural raw materials for producing health-boosting products that could address common health issues in developing countries.
Collapse
Affiliation(s)
- Walid E Abdallah
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Khaled A Abdelshafeek
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Wael M Elsayed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Mona M AbdelMohsen
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Neven A Salah
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Heba D Hassanein
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
3
|
The Use of Sea Buckthorn Processing Products in the Creation of a Functional Biologically Active Food Emulsion. Foods 2022; 11:foods11152226. [PMID: 35892810 PMCID: PMC9332202 DOI: 10.3390/foods11152226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The current trend in dietary supplements and functional foods is the use of lipophilic bioactive compounds. The sea buckthorn (Hippóphae rhamnoídes) contains some such compounds: polyunsaturated fatty acids, tocopherols, and carotenoids. Lipophilic components are best distributed using oil-in-water emulsions, which ensures their high bioavailability. A significant property of emulsions is colloidal and oxidative stability, so the choice of emulsifiers that have both surface-active properties and antioxidant activity is an important area of research for making new types of food emulsions. The purpose of this study is the development and refinement of an emulsified biologically active food additive containing sea buckthorn products (pulp, juice, and oil) and stabilized with soy phospholipids. We studied the fruits of Chuyskaya, Orange, and Prevoskhodnaya sea buckthorn varieties growing in the Altai Territory. As we analyzed their composition, we chose the Chuyskaya variety for making the emulsion. The fruits contain 5.30 ± 0.1% of lipids including 16.8 ± 0.5 mg/100 g of carotenoids and 10.5 ± 0.5 mg/100 g of tocopherols. To choose the emulsifier we studied the fractional and fatty acid composition of the soy and sunflower phospholipids with different hydrophilic-lipophilic balances (HLB). We made the emulsions containing sea buckthorn oil and pulp of its different layers, soybean oil, and phospholipids by dispersion using an HG-15D homogenizer. The study of the colloidal stability showed that the most stable (99.5%) are the emulsions containing a mixture of hydrolyzed soybean phospholipids (HLB = 7) and fractionated soybean phospholipids (HLB = 3). The best ratio is 40:60. We examined the oxidative stability of the emulsions by provoking accelerated oxidation. The emulsions containing 1.5% of a soy phospholipids mixture showed the best oxidative stability. The resulting direct oil-in-water fine emulsion contains polyunsaturated fatty acids (PUFAs), tocopherols, β-carotene, and essential phospholipids. For this reason, the emulsion can be used to make biologically active food supplements (also encapsulated) and as part of special nutrients.
Collapse
|
4
|
Comparative Study on Phenolic Compounds and Antioxidant Activities of Hop (Humulus lupulus L.) Strobile Extracts. PLANTS 2022; 11:plants11010135. [PMID: 35009138 PMCID: PMC8747208 DOI: 10.3390/plants11010135] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023]
Abstract
In this study, we investigated the phenolic compounds in hop strobile extracts and evaluated their antioxidant property using DPPH and ABTS assay. The total phenolic compound (TPC) and total flavonoid compound (TFC) estimated in two different solvent extracts considerably varied depending on the extraction solvent. The most abundant phenolic compound in hop strobile was humulones (α-acid) with levels ranging from 50.44 to 193.25 µg/g. El Dorado accession revealed higher antioxidant activity in ethanol extracts (DPPH: IC50 124.3 µg/mL; ABTS: IC50 95.4 µg/mL) when compared with that of the other accessions. Correlations between DPPH (IC50) scavenging TFC in ethanol extract (TFC_E, −0.941), and TPC_E (−0.901), and between ABTS (IC50) scavenging TFC_E (−0.853), and TPC_E (−0.826), were statistically significant at p < 0.01 level, whereas no significant correlation was observed between antioxidant activities, TPC and TFC in water extract. This study is the first to report that variations in the level of phenolic contents and antioxidant activity of various hop cultivars depended on the type of extraction solvent used and the cultivation regions. These results could provide valuable information on developing hop products.
Collapse
|
5
|
Sheng Z, Jiang Y, Liu J, Yang B. UHPLC-MS/MS Analysis on Flavonoids Composition in Astragalus membranaceus and Their Antioxidant Activity. Antioxidants (Basel) 2021; 10:1852. [PMID: 34829723 PMCID: PMC8614773 DOI: 10.3390/antiox10111852] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Astragalus membranaceus is a valuable medicinal plant species widely distributed in Asia. Its root is the main medicinal tissue rich in methoxylated flavonoids. Origin can highly influence the chemical composition and bioactivity. To characterize the principal chemicals influenced by origin and provide more information about their antioxidant profile, the extracts of A. membranaceus roots from four origins were analysed by UHPLC-MS/MS. Thirty-four flavonoids, including thirteen methoxylated flavonoids, fifteen flavonoid glycosides and six flavonols, were identified. By principal component analysis, eighteen identified compounds were considered to be principal compounds. They could be used to differentiate A. membranaceus from Shanxi, Inner Mongolia, Heilongjiang and Gansu. The antioxidant activity was analysed by ORAC assay, DPPH radical scavenging activity assay and cell antioxidant activity assay. 'Inner Mongolia' extract showed the highest antioxidant activity. These results were helpful to understand how origin influenced the quality of A. membranaceus.
Collapse
Affiliation(s)
- Zhili Sheng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.S.); (Y.J.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.S.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Z.S.); (Y.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Yang N, Jiang W, Jiang B, Liu J, Liu Y, Wang H, Guo X, Tang Z. Cotyledon loss of Astragalus membranaceus hindered seedling establishment through mineral element reallocation and carbohydrate depletion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:481-491. [PMID: 34425393 DOI: 10.1016/j.plaphy.2021.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Tissue loss of plants caused by herbivores is very common in nature. As the storage and first photosynthetic organ, the loss of cotyledon severely impacts dicot seedling establishment and the subsequent growth. However, it is still not clear how plants adjust their metabolic strategy in response to cotyledon loss. In this study, we employed ICP-OES, GC and LC-MS to examine the effects of cotyledon removal (RC1: remove one cotyledon, RC2: remove two cotyledon) on mineral element distribution and metabolite changes in a traditional Chinese herbal plant, Astragalus membranaceus. The results showed that cotyledon removal had a greater effect on shoot than root growth. Specifically, RC2 revealed a more serious impact on shoot growth than RC1. Microelement Mn and Na in shoot increased more in RC2 than RC1. Macroelement K and microelement B in root increased in RC2. The metabolite results in shoot showed that sugars related to galactose metabolism reduced while amino acids significantly increased in RC2. In root, sugars related to fructose and mannose metabolism decreased in both RC1 and RC2 while most flavonoids increased in RC2. It can be concluded that cotyledon removal triggered different metabolic strategies in both root and shoot. In shoot, more Mn was absorbed to improve the lowered photosynthetic efficiency. Meanwhile, increased Na may have promoted carbohydrate consumption and amino acid synthesis, thereby maintaining shoot growth. In root, K and B participation in cell division and expansion increased, as well as the delivery and metabolism of carbohydrates, to maintain root system growth.
Collapse
Affiliation(s)
- Nan Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wanting Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Bing Jiang
- Harbin Customs Technology Center, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yang Liu
- School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Hongzheng Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
7
|
Sukhikh S, Noskova S, Pungin A, Ivanova S, Skrypnik L, Chupakhin E, Babich O. Study of the Biologically Active Properties of Medicinal Plant Cotinus coggygria. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061224. [PMID: 34208532 PMCID: PMC8235186 DOI: 10.3390/plants10061224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 05/02/2023]
Abstract
The results of the studies have shown that to obtain an extract of a complex of biologically active substances of Cotinus coggygria, ethyl alcohol (mass fraction of alcohol 70%) with a hydromodule of 1:5 should be used, and the extraction should be carried out for 60 min at a temperature of 60 °C. The investigated plant extracts with the complex of bioactive substances from the Cotinus coggygria leaves and flowers are safe from the point of view of the content of heavy metals, pesticides, aflatoxin B1, radionuclides, as well as pathogenic and opportunistic microorganisms. It has been established that the Cotinus coggygria extract contains rutin, hyperoside, ferulic acid, quercetin, kaempferol, disulphuretin, sulphurein, sulphurein, gallic acid, methyl gallate, pentagalloyl glucose, 3,3',4',5,6,7-hexahydroxyflavonone, 3,3',4',5,5',7-hexahydroxyflavonone, 3-O-α-L-rhamnofuranoside, 3,3',4',5,5',7-hexahydroxyflavulium(1+), 7-O-β-D glucopyranoside, and 3,3',4',7-tetrahydroxyflavonone. The tested extracts have anticancer, antigenotoxic, and antimicrobial (against E. coli, S. aureus, P. vulgaris, C. albicans, L. mesenteroides) properties. The high antioxidant status of the tested extracts was established; the antioxidant activity of the samples was 145.09 mg AA/g (AA-ascorbic acid).
Collapse
Affiliation(s)
- Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| | - Artem Pungin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia
- Correspondence: ; Tel.: +7-384-239-6832
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (S.S.); (S.N.); (A.P.); (L.S.); (E.C.); (O.B.)
| |
Collapse
|
8
|
Anticancer and biological properties of leaf and flower extracts of Echinacea purpurea (L.) Moench. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Babich O, Sukhikh S, Pungin A, Astahova L, Chupakhin E, Belova D, Prosekov A, Ivanova S. Evaluation of the Conditions for the Cultivation of Callus Cultures of Hyssopus officinalis Regarding the Yield of Polyphenolic Compounds. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050915. [PMID: 34063290 PMCID: PMC8147393 DOI: 10.3390/plants10050915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 05/08/2023]
Abstract
The cultivation of plants in the form of callus cultures constitutes a renewable source of secondary plant metabolites. The conditions for the cultivation of callus cultures affect the yield of target compounds. Callus cultures of Hyssopus officinalis were chosen for study. Nutrient media of various compositions were used for Hyssopus officinalis callus culture. For each culture, data on the quantitative contents of saponins, flavonoids and polyphenolic compounds, as well as antioxidant activity, were obtained. It was found that Murashige and Skoog medium supplemented with 1-naphthylacetic acid and kinetin led to the highest yield of secondary metabolites.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.); (L.A.); (E.C.); (D.B.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.); (L.A.); (E.C.); (D.B.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Artem Pungin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.); (L.A.); (E.C.); (D.B.)
| | - Lidiya Astahova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.); (L.A.); (E.C.); (D.B.)
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.); (L.A.); (E.C.); (D.B.)
| | - Daria Belova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.); (L.A.); (E.C.); (D.B.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Correspondence: ; Tel.: +7-384-239-6832
| |
Collapse
|
10
|
Milentyeva I, Le V, Kozlova O, Velichkovich N, Fedorova A, Loseva A, Yustratov V. Secondary metabolites in in vitro cultures of Siberian medicinal plants: Content, antioxidant properties, and antimicrobial characteristics. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-1-153-163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Wild-crafting leads to the local extinction of many medicinal plants that are rich in phenolic substances. In vitro cultivation of cells and organs of higher plants can be the optimal solution to this problem. The research objective was to study the biosynthetic activity of in vitro extracts of wild Siberian plants.
Study objects and methods. The study featured callus, cell suspension, and hairy root extracts of such Siberian medicinal plants as Eleutherococcus senticosus, Codonopsis pilosula, Platanthera bifolia, and Saposhnikovia divaricata. They were obtained by in vitro cultivation using modified nutrient media of Murashige and Skoog and Gamborg. The content of secondary metabolites was studied using the methods of thin-layer and high-performance liquid chromatography. A set of in vitro experiments tested the antioxidant and antimicrobial activity of the extracts.
Results and discussion. All the samples demonstrated a high content of secondary metabolites of phenolic nature. Flavonoglycosides, apigenin, and rutin were found to be the predominant biologically active substances in the callus extracts. Flavonoglycosides dominated in the suspension extracts. The root extracts contained more caffeic acid, rutin, ecdysteroids, quercetin, apigenin, cardiofolin, and coleofolide than the callus and suspension cultures. The list of prevailing secondary metabolites in the root extracts included rutin, apigenin, coleofolide, and quercetin. All the extracts showed antimicrobial and antioxidant activity.
Conclusion. All the extracts demonstrated good antioxidant and antimicrobial properties. Therefore, they can be used for the production of pharmaceuticals and biologically active food supplements as they can be helpful against infectious diseases, as well as oncological, cardiovascular, and neurodegenerative diseases linked to oxidative stress.
Collapse
|
11
|
Determination of the Qualitative Composition of Biologically Active Substances of Extracts of In Vitro Callus, Cell Suspension, and Root Cultures of the Medicinal Plant Rhaponticum carthamoides. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work aims to study the qualitative composition of biologically active substance (BAS) extracts in vitro callus, cell suspension, and root cultures of the medicinal plant Rhaponticum carthamoides. The research methodology is based on high-performance liquid chromatography, and 1H nuclear magnetic resonance (NMR) spectra, to study the qualitative and quantitative analysis of BAS. The results of the qualitative composition analysis of the dried biomass extracts of in vitro callus, cell suspension and root cultures showed that the main biologically active substances in the medicinal plant Rhaponticum carthamoides are 2-deoxy-5,20,26-trihydroxyecdyson (7 mg, yield 0.12%), 5,20,26-trihydroxyecdyson 20,22-acetonide (15 mg, yield 0.25%), 2-deoxy-5,20,26-trihydroxyecdyson 20,22-acetonide (6 mg, yield 0.10%), 20,26-dihydroxyecdyson 20,22-acetonidecdyson 20,22-acetonide (5 mg, yield 0.09%), and ecdyson 20,22-acetonide (6 mg, yield 0.10%). In the future, it is planned to study the antimicrobial, antioxidant, and antitumor activity of BAS of extracts of in vitro callus, cell suspension, and root cultures of the medicinal plant Rhaponticum carthamoides, for the production of pharmaceuticals and dietary supplements with antitumor, antimicrobial and antioxidant effects.
Collapse
|
12
|
Determination of the Qualitative Composition of Biologically-Active Substances of Extracts of In Vitro Callus, Cell Suspension, and Root Cultures of the Medicinal Plant Rhodiola rosea. Biomolecules 2021; 11:biom11030365. [PMID: 33673508 PMCID: PMC7997454 DOI: 10.3390/biom11030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
The results of the qualitative composition analysis of the dried biomass extracts of in vitro callus, cell suspension, and root cultures show that the main biologically active substances (BAS) in the medicinal plant, Rhodiola rosea, are 6-C-(1-(4-hydroxyphenyl)ethyl)aromadendrin (25 mg, yield 0.21%), 2-(3,7-dihydroxy-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-yl)-6,7-dihydroxychroman-4-one (23 mg, yield 0.2%), 2-(3,4-dimethoxyphenyl)-5,7-dimethoxychroman-4-one (175 mg, yield 1.5%), 5,7-dihydroxy-2-(4-hydroxy-3-(2-(4-hydroxyphenyl)-4-oxo-4H-chromen-6-yl)phenyl)-4H-chromen-4-one (45 mg, yield 0.5%), 5,6,7,8-tetrahydroxy-4-methoxyflavone (0.35 mg, 0.5%). BAS from the dried biomass extracts of in vitro callus, cell suspension, and root cultures of Rhodiola rosea will be used for the production of pharmaceuticals and dietary supplements with antitumor, antimicrobial, and antioxidant effects.
Collapse
|
13
|
Babich O, Sukhikh S, Pungin A, Ivanova S, Asyakina L, Prosekov A. Modern Trends in the In Vitro Production and Use of Callus, Suspension Cells and Root Cultures of Medicinal Plants. Molecules 2020; 25:molecules25245805. [PMID: 33316965 PMCID: PMC7763305 DOI: 10.3390/molecules25245805] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
This paper studies modern methods of producing and using callus, suspension cells and root cultures of medicinal plants in vitro. A new solution for natural product production is the use of an alternative source of renewable, environmentally friendly raw materials: callus, suspension and root cultures of higher plants in vitro. The possibility of using hairy root cultures as producers of various biologically active substances is studied. It is proven that the application of the genetic engineering achievements that combine in vitro tissue culture and molecular biology methods was groundbreaking in terms of the intensification of the extraction process of compounds significant for the medical industry. It is established that of all the callus processing methods, suspension and root cultures in vitro, the Agrobacterium method is the most widely used in practice. The use of agrobacteria has advantages over the biolistic method since it increases the proportion of stable transformation events, can deliver large DNA segments and does not require special ballistic devices. As a result of the research, the most effective strains of agrobacteria are identified.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Artem Pungin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Correspondence: ; Tel.: +7-384-239-6832
| | - Lyudmila Asyakina
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| |
Collapse
|
14
|
Salekeen R, Mou SN, Islam ME, Ahmed A, Billah MM, Rahman SMM, Islam KMD. Predicting multi-enzyme inhibition in the arachidonic acid metabolic network by Heritiera fomes extracts. J Biomol Struct Dyn 2020; 40:4259-4272. [PMID: 33283657 DOI: 10.1080/07391102.2020.1855248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Heritiera fomes is a mangrove plant with a rich history of ethnomedicinal usage against chronic inflammation. Biochemical analyses of H. fomes have exposed a plethora of bioactive phytochemicals that contribute to this therapeutic effect by perturbing enzymes of a complex inflammatory network mediated by arachidonic acid (AA) metabolism. This study is the first instance of utilizing cheminformatic approaches to elucidate a molecular linkage between these phytochemical interventions and the multi-enzyme AA metabolic network regulation. Analysis of the simulations reflects H. fomes as a functional reservoir of multiple safe and potent natural anti-inflammatory compounds. The investigation suggests two phytocompounds extracted from the plant: a sesquiterpene lactone and a flavone glycoside, as candidate inhibitors of multiple catalytic checkpoints of the inflammatory network. The outcomes of this research act as a primary guideline for future laboratory and clinical testing of anti-inflammatory potentials of H. fomes as an exploitable source of safe and potent drug-like molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sadia Noor Mou
- Department of Biochemistry and Molecular Biology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - S M Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
15
|
Babich O, Sukhikh S, Prosekov A, Asyakina L, Ivanova S. Medicinal Plants to Strengthen Immunity during a Pandemic. Pharmaceuticals (Basel) 2020; 13:E313. [PMID: 33076514 PMCID: PMC7602650 DOI: 10.3390/ph13100313] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The development of new effective anti-coronavirus drugs and therapies is important, but it requires significant human, financial and, most importantly, time expenditures. The current pandemic is neither the first nor the last. Humanity has already accumulated considerable survival experience. We cannot do without prevention and epidemiological protection measures. This study reviews medicinal plants that grow in Northeast Asia and whose antioxidant, antiviral, anti-inflammatory and immunomodulatory characteristics are already known, also in the framework of the prevention and treatment of pneumonia of various etiologies. The need for a comprehensive approach to maintaining immunodefences, including functional foods and positive emotions, is emphasized. In the period of pandemics, it is important to research various areas that allow to us accumulate a critical mass of information and cope with the next global disease.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Lyudmila Asyakina
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia
| |
Collapse
|
16
|
Sea Buckthorn and Rosehip Oils with Chokeberry Extract to Prevent Hypercholesterolemia in Mice Caused by a High-Fat Diet In Vivo. Nutrients 2020; 12:nu12102941. [PMID: 32992796 PMCID: PMC7600764 DOI: 10.3390/nu12102941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Dietary supplementation based on sea buckthorn and rosehip oils with added chokeberry extract was studied. We added the dietary supplement to the feed mixtures for laboratory animals. The possible toxicological effects and hypocholesterolemic, hepatoprotective activity of the dietary supplement in vivo were studied. After the observation period (6 weeks), no significant changes were found in the mass of organs and blood serum of laboratory animals (p > 0.05). However, there was a decrease in hypercholesterolemic indicators. Regular consumption of sea buckthorn and rosehip oils with added chokeberry extract (dietary supplement “ESB-1”) by laboratory animals inhibited the activity of liver enzymes and increased the antioxidant activity of blood serum (after the subcutaneous injection of sunflower oil/oil solution of carbon tetrachloride) but was not sufficient to bring them to physiological standards. The hypocholesterolemic and antioxidant properties of our dietary supplement already allow us to consider it a component of functional food products or a dietary supplement base. However, the full range of its biologically active properties, including the hepatoprotective function and regulation of metabolic disorders, has not been studied yet, which sets the direction of further research in vivo models and clinical practice to confirm its effectiveness in humans.
Collapse
|
17
|
Phenolic Compounds in Extracts of Hibiscus acetosella (Cranberry Hibiscus) and Their Antioxidant and Antibacterial Properties. Molecules 2020; 25:molecules25184190. [PMID: 32932699 PMCID: PMC7571108 DOI: 10.3390/molecules25184190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023] Open
Abstract
Hibiscus species are rich in phenolic compounds and have been traditionally used for improving human health through their bioactive activities. The present study investigated the phenolic compounds of leaf extracts from 18 different H. acetosella accessions and evaluated their biofunctional properties, focusing on antioxidant and antibacterial activity. The most abundant phenolic compound in H. acetosella was caffeic acid, with levels ranging from 14.95 to 42.93 mg/100 g. The antioxidant activity measured by the ABTS assay allowed the accessions to be classified into two groups: a high activity group with red leaf varieties (74.71–84.02%) and a relatively low activity group with green leaf varieties (57.47–65.94%). The antioxidant activity was significantly correlated with TAC (0.933), Dp3-Sam (0.932), Dp3-Glu (0.924), and Cy3-Sam (0.913) contents (p < 0.001). The H. acetosella phenolic extracts exhibited antibacterial activity against two bacteria, with zones of inhibition between 12.00 and 13.67 mm (Staphylococcus aureus), and 10.67 and 13.33 mm (Pseudomonas aeruginosa). All accessions exhibited a basal antibacterial activity level (12 mm) against the Gram-positive S. aureus, with PI500758 and PI500764 exhibiting increased antibacterial activity (13.67 mm), but they exhibited a more dynamic antibacterial activity level against the Gram-negative P. aeruginosa.
Collapse
|
18
|
Sarikurkcu C, Zengin G. Polyphenol Profile and Biological Activity Comparisons of Different Parts of Astragalus macrocephalus subsp. finitimus from Turkey. BIOLOGY 2020; 9:biology9080231. [PMID: 32824439 PMCID: PMC7464095 DOI: 10.3390/biology9080231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
The members of the genus Astragalus have great interest as traditional drugs in several folk systems including Turkey. In this sense, the present paper was aimed to explore the biological properties and chemical profiles of different parts (aerial parts, leaves, flowers, stems, and roots) of A. macrocephalus subsp. finitimus. Antioxidant (radical quenching, reducing power, and metal chelating) and enzyme inhibitory (α-amylase and tyrosinase) effects were investigated for biological properties. Regarding chemical profiles, individual phenolic compounds were detected by LC-MS, as well as total amounts. The leaves extract exhibited the strongest antioxidant abilities when compared with other parts. However, flowers extract had the best metal chelating ability. Hyperoside, apigenin, p-coumaric, and ferulic acids were identified as main compounds in the tested parts. Regarding enzyme inhibitory properties, tyrosinase inhibitory effects varied from IC50: 1.02 to 1.41 mg/mL. In addition, the best amylase inhibition effect was observed by leaves (3.36 mg/mL), followed by aerial parts, roots, stems, and flowers. As a result, from multivariate analysis, the tested parts were classified in three cluster. Summing up the results, it can be concluded that A. macrocephalus subsp. finitimus could be a precious source of natural bioactive agents in pharmaceutical, nutraceutical, and cosmeceutical applications.
Collapse
Affiliation(s)
- Cengiz Sarikurkcu
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya 42130, Turkey
- Correspondence: ; Tel.: +90-332-223-2781
| |
Collapse
|
19
|
Dyshlyuk L, Babich O, Prosekov A, Ivanova S, Pavsky V, Chaplygina T. The effect of postharvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato. Heliyon 2020; 6:e03288. [PMID: 32021939 PMCID: PMC6992987 DOI: 10.1016/j.heliyon.2020.e03288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 09/11/2019] [Accepted: 01/20/2020] [Indexed: 02/01/2023] Open
Abstract
The effect of different doses of long-wavelength UV-A (320 nm-400nm) irradiation on physicochemical and antioxidant characteristics of tomatoes grown on the territory of the Russian Federation was studied. The obtained results show that this kind of processing does not cause deterioration of qualitative parameters of vegetables (texture, color, soluble solids content, titratable acidity). It was established that the total content of phenolic compounds, carotenoids and flavonoids increases (p-value<0.05) in tomatoes at all the investigated wavelengths (353 nm, 365 nm and 400 nm), while the content of chlorophylls reacts ambiguously: at some wavelengths, it increases, at other, it decreases. The maximum increase in antioxidant activity, as compared to untreated samples, is observed in tomatoe samples irradiated for 360 min within the range of 365 nm. For different types of tomatoes, the increment for common content of phenolic compounds is - 42.9-55.0 %, carotenoids - 24.0-56.0 %, flavonoids - 28.0-33.0 %, β-carotene - 70.9-71.6 %, lycopene - 62.6-69.0 %, lutein - 64.8-72.0 % from original. The studies reveal some potential of post-harvest ultraviolet irradiation (A-range) of tomatoes to increase their antioxidant activity. However, more research is needed to confirm this fact and the possibility to develop some technology.
Collapse
Affiliation(s)
- Lyubov Dyshlyuk
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, Kemerovo, 650043, Russia
| | - Valery Pavsky
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, Kemerovo, 650043, Russia
| | - Tatiana Chaplygina
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, Kemerovo, 650043, Russia
| |
Collapse
|