1
|
Ciftel E, Mercantepe F, Mercantepe T, Akyildiz K, Yilmaz A, Ciftel S. Comparative Analysis of Epigallocatechin-3-Gallate and TNF-Alpha Inhibitors in Mitigating Cisplatin-Induced Pancreatic Damage Through Oxidative Stress and Apoptosis Pathways. Biol Trace Elem Res 2024; 202:5190-5207. [PMID: 38776022 PMCID: PMC11442533 DOI: 10.1007/s12011-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 10/01/2024]
Abstract
Oxidative stress and inflammation caused by cisplatin, which is frequently used in the treatment of many cancers, damage healthy tissues as well as cancer cells. In this study, we aimed to investigate the effect of epigallocatechin-3-gallate (EGCG) and infliximab (INF) administration on pancreatic endocrine cells in rats treated with systemic cisplatin (CDDP). The rats were randomly divided into 6 groups: group 1 (control group), group 2 (EGCG group), group 3 (CDDP group), group 4 (EGCG + CDDP group), group 5 (CDDP + INF group), and group 6 (EGCG + CDDP + INF group). The study's findings demonstrated that EGCG and INF effectively reduced the cellular damage induced by CDDP in histopathologic investigations of the pancreas. EGCG and INF, whether used individually or in combination, demonstrated a significant reduction in malondialdehyde (MDA) levels and an increase in glutathione (GSH) levels in the rat pancreas compared to the CDDP group. Immunohistochemically, the enhanced presence of insulin and glucagon positivity in the EGCG and INF groups, along with the absence of TUNEL immunopositivity, indicate that both treatments reduced CDDP-induced apoptosis. Furthermore, the observed lack of immunopositivity in TNF-α and 8-OHdG in the groups treated with EGCG and INF, compared to those treated with CDDP, indicates that these substances can inhibit inflammation. EGCG and INF, whether provided alone or together, can potentially reduce the damage caused to pancreatic islet cells by cisplatin. This effect is achieved through their anti-inflammatory and antioxidant properties during the early stages of the condition.
Collapse
Affiliation(s)
- Enver Ciftel
- Department of Endocrinology and Metabolism, Sivas Numune Hospital, Sivas, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, 53010, Turkey.
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Education and Research Hospital, Erzurum, Turkey
| |
Collapse
|
2
|
Gazwi HSS, Zaki AH, Abd Allah NAR, Gomaa AT, Milošević M, Al-Rejaie SS, Mohany M, Yassien EE. Mitigation of cisplatin-induced hepatotoxicity by Salvia officinalis: Attenuation of oxidative damage and inflammation in rats. Free Radic Biol Med 2024; 222:62-71. [PMID: 38852878 DOI: 10.1016/j.freeradbiomed.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Salvia officinalis L., commonly known as sage and belonging to the Lamiaceae family, is a medicinal herb indigenous to the Mediterranean region. It is celebrated for its diverse pharmacological properties and traditional uses in folk medicine, particularly in addressing hepatotoxicity. Cisplatin (Cis), a potent chemotherapeutic agent widely employed in cancer treatment, is recognized for its efficacy but often accompanied by adverse effects, including hepatotoxicity. The aim of this study was to assess whether an ethanolic S. officinalis extract (ESOE) could provide protection against Cis-induced hepatotoxicity in an experimental rat model. The ESOE was prepared using standard extraction techniques, and its chemical constituents were elucidated through UPLC-ESI-MS/MS analysis, revealing the presence of bioactive compounds such as alkaloids, phenolic compounds, and flavonoids, which are associated with various therapeutic effects, including hepatoprotection. Adult male albino rats were allocated into four groups: control, ESOE (250 mg/kg), Cis (7.5 mg/kg), and ESOE (250 mg/kg) + Cis (7.5 mg/kg). The treatment duration lasted 21 days, with Cis administration on the 22nd day. Twenty-four hours post-Cis administration, blood and liver samples were collected for analysis. Cis-induced hepatotoxicity was evidenced by alterations in hematological parameters, including erythrocyte, thrombocyte, leukocyte, and lymphocyte counts, alongside elevated serum levels of liver enzymes (ALT, LDH, AST, ALP, and GGT), indicative of liver damage. Furthermore, Cis exposure resulted in increased hepatic malondialdehyde (MDA) and Nitric oxide (NO) levels, oxidative stress markers, coupled with decreased levels of reduced glutathione (GSH), a non-enzymatic antioxidant, and histopathological changes in liver tissue, characterized by necrosis and inflammation. Additionally, Cis treatment led to elevated levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), TNF-α, and IL-6, indicating oxidative stress and inflammation. Remarkably, pretreatment with ESOE ameliorated these Cis-induced hepatotoxic effects, as evidenced by improved hematological parameters, reduced liver enzyme activities, alleviated oxidative stress, and ameliorated histopathological alterations. The observed hepatoprotective effects of ESOE against Cis-induced liver injury may be attributed to its antioxidant and anti-inflammatory properties, highlighting its potential as a natural therapeutic agent in mitigating chemotherapy-associated hepatotoxicity.
Collapse
Affiliation(s)
- Hanaa S S Gazwi
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt.
| | - Asmaa Hussein Zaki
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt
| | - Nedaa A R Abd Allah
- Department of Food Science, Faculty of Agriculture, Minia University, Minia, 61519, Egypt
| | - Asmaa Talat Gomaa
- Department of Agricultural Economics, Faculty of Agriculture, Minia University, 61519 Egypt
| | - Marija Milošević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Eman E Yassien
- Department of Agricultural Chemistry, Agriculture Faculty, Minia University, El-Minia, Egypt
| |
Collapse
|
3
|
Gad F, Abdelghaffar Emam M, Eldeeb AA, Abdelhameed AA, Soliman MM, Alotaibi KS, Albattal SB, Abughrien B. Mitigative Effects of l-Arginine and N-Acetyl Cysteine against Cisplatin-Induced Testicular Dysfunction and Toxicity through the Regulation of Antioxidant, Anti-inflammatory, and Antiapoptotic Markers: Role of miR-155 and miR-34c Expression. ACS OMEGA 2024; 9:27680-27691. [PMID: 38947789 PMCID: PMC11209920 DOI: 10.1021/acsomega.4c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Testicular dysfunction is a common adverse effect of cisplatin (CIS) administration as a chemotherapeutic drug. The current study has outlined the role of micro-RNAs (miR-155 and 34c) in CIS-induced testicular dysfunction and evaluated the protective effect of N-acetyl cysteine (NAC) and/or l-arginine (LA). Seven groups of Albino rats were used for this study. The control (C) group received physiological saline; the CIS group was injected CIS (7 mg/kg IP, once) on day 21 of the experiment; the NAC group was administered NAC (150 mg/kg intragastric, for 28 days); and the LA group was injected LA (50 mg/kg IP, for 28 days). NAC+CIS, LA+CIS, and NAC+LA+CIS groups received the above regime. CIS significantly reduced serum testosterone, LH, and FSH concentrations with decline of testicular enzyme activities. CIS caused significant elevation in testicular oxidative-stress biomarkers, inflammation-associated cytokines, and apoptosis markers, along with overexpression of miR-155 and low miR-34c expression. Additionally, marked testicular degenerative changes were observed in the examined histological section; a significant decrease in the expression of PCNA with significant increase in expressions of F4/80 and BAX was confirmed. The administration of NAC or LA upregulated testicular functions and improved histopathological and immunohistochemical changes as well as miRNA expression compared with the CIS-administered group. Rats receiving both NAC and LA showed a more significant ameliorative effect compared with groups receiving NAC or LA alone. In conclusion, NAC or LA showed an ameliorative effect against CIS-induced testicular toxicity and dysfunction through the regulation of antioxidant, anti-inflammatory, and antiapoptotic markers and via modulating miR-155 and miR-34c expression.
Collapse
Affiliation(s)
- Fatma
A. Gad
- Clinical
Pathology Department, Faculty of Veterinary Medicine, Benha University, P.O. Box13736 Benha, Egypt
| | - Mahmoud Abdelghaffar Emam
- Histology
Department., Faculty of Veterinary Medicine, Benha University, P.O. Box 13736 Benha, Egypt
| | - Abeer A. Eldeeb
- Clinical
Pharmacology Department, Faculty of Medicine, Benha University, 13511 Benha, Egypt
| | - Abeer A. Abdelhameed
- Clinical
Pharmacology Department, Faculty of Medicine, Benha University, 13511 Benha, Egypt
| | - Mohamed Mohamed Soliman
- Department
of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O.
Box 11099, Taif 21944, Saudi Arabia
| | - Khalid S. Alotaibi
- General
Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Shatha B. Albattal
- General
Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Badia Abughrien
- Anatomy and
Histology Department, Faculty of Veterinary Medicine, Tripoli University, 15673 Tripoli, Libya
| |
Collapse
|
4
|
Ciftel S, Tumkaya L, Saral S, Mercantepe T, Akyildiz K, Yilmaz A, Mercantepe F. The impact of apelin-13 on cisplatin-induced endocrine pancreas damage in rats: an in vivo study. Histochem Cell Biol 2024:10.1007/s00418-024-02269-x. [PMID: 38368592 DOI: 10.1007/s00418-024-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Apelin-13 is a peptide hormone that regulates pancreatic endocrine functions, and its benefits on the endocrine pancreas are of interest. This study aims to investigate the potential protective effects of apelin-13 in cisplatin-induced endocrine pancreatic damage. Twenty-four rats were divided into four groups: control, apelin-13, cisplatin, and cisplatin + apelin-13. Caspase-3, TUNEL, and Ki-67 immunohistochemical staining were used as markers of apoptosis and mitosis. NF-κB/p65 and TNFα were used to show inflammation. β-cells and α-cells were also evaluated with insulin and glucagon staining in the microscopic examination. Pancreatic tissue was subjected to biochemical analyses of glutathione (GSH) and malondialdehyde (MDA). Apelin-13 ameliorated cisplatin-induced damage in the islets of Langerhans. The immunopositivity of apelin-13 on β-cells and α-cells was found to be increased compared to the cisplatin group (p = 0.001, p = 0.001). Mitosis and apoptosis were significantly higher in the cisplatin group (p = 0.001). Apelin-13 reduced TNFα, NF-κB/p65 positivity, and apoptosis caused by cisplatin (p = 0.001, p = 0.001, p = 0.001). While cisplatin caused a significant increase in MDA levels (p = 0.001), apelin caused a significant decrease in MDA levels (p = 0.001). The results demonstrated a significant decrease in pancreatic tissue GSH levels following cisplatin treatment (p = 0.001). Nevertheless, apelin-13 significantly enhanced cisplatin-induced GSH reduction (p = 0.001). On the other hand, the serum glucose level, which was measured as 18.7 ± 2.5 mmol/L in the cisplatin group, decreased to 13.8 ± 0.7 mmol/L in the cisplatin + apelin-13 group (p = 0.001). The study shows that apelin-13 ameliorated cisplatin-induced endocrine pancreas damage by reducing oxidative stress and preventing apoptosis.
Collapse
Affiliation(s)
- Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine Recep, Tayyip Erdogan University, 53010, Rize, Turkey.
| |
Collapse
|
5
|
Ibrahim Fouad G, El-Sayed SAM, Mabrouk M, Ahmed KA, Beherei HH. Neuroprotective Potential of Intranasally Delivered Sulforaphane-Loaded Iron Oxide Nanoparticles Against Cisplatin-Induced Neurotoxicity. Neurotox Res 2022; 40:1479-1498. [PMID: 35969308 PMCID: PMC9515146 DOI: 10.1007/s12640-022-00555-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Cisplatin (CIS) is a platinum-based chemotherapeutic drug that is widely used to treat cancer. However, its therapeutic efficiency is limited due to its potential to provoke neurotoxicity. Sulforaphane (SF) is a natural phytochemical that demonstrated several protective activities. Iron oxide nanoparticles (Fe3O4-NPs) could be used as drug carriers. This study aimed to explore the nanotoxic influence of SF-loaded within Fe3O4-NPs (N.SF), and to compare the neuroprotective potential of both N.SF and SF against CIS-induced neurotoxicity. N.SF or SF was administrated intranasally for 5 days before and 3 days after a single dose of CIS (12 mg/kg/week, i.p.) on the 6th day. Neuromuscular coordination was assessed using hanging wire and tail-flick tests. Acetylcholinesterase (AChE) activities and markers of oxidative stress were measured in the brain. In addition, the brain iron (Fe) content was estimated. CIS significantly induced a significant increase in AChE activities and lipid peroxides, and a significant decrement in glutathione (GSH) and nitric oxide (NO) contents. CIS elicited impaired neuromuscular function and thermal hyperalgesia. CIS-induced brains displayed a significant reduction in Fe content. Histopathological examination of different brain regions supported the biochemical and behavioral results. Contradict, treatment of CIS-rats with either N.SF or SF significantly decreased AChE activity, mitigated oxidative stress, and ameliorated the behavioral outcome. The histopathological features supported our results. Collectively, N.SF demonstrated superior neuroprotective activities on the behavioral, biochemical, and histopathological (striatum and cerebral cortex) aspects. N.SF could be regarded as a promising “pre-clinical” neuroprotective agent. Furthermore, this study confirmed the safe toxicological profile of Fe3O4-NPs.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
6
|
Fathy M, Darwish MA, Abdelhamid ASM, Alrashedy GM, Othman OA, Naseem M, Dandekar T, Othman EM. Kinetin Ameliorates Cisplatin-Induced Hepatotoxicity and Lymphotoxicity via Attenuating Oxidative Damage, Cell Apoptosis and Inflammation in Rats. Biomedicines 2022; 10:biomedicines10071620. [PMID: 35884925 PMCID: PMC9312964 DOI: 10.3390/biomedicines10071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Though several previous studies reported the in vitro and in vivo antioxidant effect of kinetin (Kn), details on its action in cisplatin-induced toxicity are still scarce. In this study we evaluated, for the first time, the effects of kinetin in cisplatin (cp)- induced liver and lymphocyte toxicity in rats. Wistar male albino rats were divided into nine groups: (i) the control (C), (ii) groups 2,3 and 4, which received 0.25, 0.5 and 1 mg/kg kinetin for 10 days; (iii) the cisplatin (cp) group, which received a single intraperitoneal injection of CP (7.0 mg/kg); and (iv) groups 6, 7, 8 and 9, which received, for 10 days, 0.25, 0.5 and 1 mg/kg kinetin or 200 mg/kg vitamin C, respectively, and Cp on the fourth day. CP-injected rats showed a significant impairment in biochemical, oxidative stress and inflammatory parameters in hepatic tissue and lymphocytes. PCR showed a profound increase in caspase-3, and a significant decline in AKT gene expression. Intriguingly, Kn treatment restored the biochemical, redox status and inflammatory parameters. Hepatic AKT and caspase-3 expression as well as CD95 levels in lymphocytes were also restored. In conclusion, Kn mitigated oxidative imbalance, inflammation and apoptosis in CP-induced liver and lymphocyte toxicity; therefore, it can be considered as a promising therapy.
Collapse
Affiliation(s)
- Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Mostafa A. Darwish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Al-Shaimaa M. Abdelhamid
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Gehad M. Alrashedy
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Othman Ali Othman
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Muhammad Naseem
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| |
Collapse
|
7
|
Elsayed A, Elkomy A, Alkafafy M, Elkammar R, El-Shafey A, Soliman A, Aboubakr M. Testicular toxicity of cisplatin in rats: ameliorative effect of lycopene and N-acetylcysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24077-24084. [PMID: 34825328 DOI: 10.1007/s11356-021-17736-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Lycopene (LP) and N-acetylcysteine (NAC) protective effects were assessed for testicular toxicity mediated by cisplatin (CP) in rats. Forty-nine rats were divided into 7 groups (n = 7); these groups included the control group (saline, PO), LP (10 mg/kg, PO), NAC (150 mg/kg, PO), CP (7.5 mg/kg, IP) on the 27th day of the study, LP + CP, NAC+CP, and LP + NAC + CP. Serum levels of testosterone were decreased following CP injection. Malondialdehyde (MDA) has been increased with considerable glutathione (GSH), and dismutase superoxide (SOD) and catalase (CAT) decline in the testis tissues after CP injection. CP caused severe alterations in testicular tissues and elevated caspase-3 expression. Besides that, LP and/or NAC administration improved CP-induced testicular toxicity and apoptosis, probably via their antioxidant properties.
Collapse
Affiliation(s)
- Asmaa Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt
| | - Ashraf Elkomy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Reda Elkammar
- Department of Histology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt
| | - Anwar El-Shafey
- Anatomy Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt
| | - Ahmed Soliman
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt.
| |
Collapse
|
8
|
Reproductive and developmental toxicities of 5-fluorouracil in model organisms and humans. Expert Rev Mol Med 2022; 24:e9. [PMID: 35098910 PMCID: PMC9884763 DOI: 10.1017/erm.2022.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chemotherapy, as an important clinical treatment, has greatly enhanced survival in cancer patients, but the side effects and long-term sequelae bother both patients and clinicians. 5-Fluorouracil (5-FU) has been widely used as a chemotherapeutic agent in the clinical treatment of various cancers, but several studies showed its adverse effects on reproduction. Reproductive toxicity of 5-FU often associates with developmental block, malformation and ovarian damage in the females. In males, 5-FU administration alters the morphology of sexual organs, the levels of reproductive endocrine hormones and the progression of spermatogenesis, ultimately reducing sperm numbers. Mechanistically, 5-FU exerts its effect through incorporating the active metabolites into nucleic acids directly, or inhibiting thymidylate synthase to disrupt the function of DNA and RNA, leading to profound effects on cellular metabolism and viability. However, some studies suggested that the toxicity of 5-FU on reproduction is reversible and certain drugs used in combination with 5-FU during chemotherapy could protect reproductive systems from 5-FU damage both in females and males. Herein, we summarise the recent findings and discuss underlying mechanisms of the 5-FU-induced reproductive toxicity, providing a reference for future research and clinical treatments.
Collapse
|
9
|
Liu N, Zhou S, Olatunji OJ, Wu Y. Nucleosides rich extract from Cordyceps cicadae alleviated cisplatin-induced neurotoxicity in rats: A behavioral, biochemical and histopathological study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Aboraya DM, El Baz A, Risha EF, Abdelhamid FM. Hesperidin ameliorates cisplatin induced hepatotoxicity and attenuates oxidative damage, cell apoptosis, and inflammation in rats. Saudi J Biol Sci 2022; 29:3157-3166. [PMID: 35844386 PMCID: PMC9280168 DOI: 10.1016/j.sjbs.2022.01.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is one of the most widely used chemotherapeutic anti-cancer drugs that is associated with multiple systemic toxicities limiting its use. The present study aimed to evaluate the hepato-protective effect of hesperidin against cisplatin-induced toxicity. Thirty-two adult male albino rats were equally split into four groups, the first group served as control received normal saline, the second group (CIS) received a single intraperitoneal dose of cisplatin (7.5 mg/kg bw) on the 22nd day of the experiment, the third group (HES) treated once daily with hesperidin (200 mg/kg bw, orally) for 21 days, and the last group (HES + CIS) pretreated once daily with hesperidin followed by a single intraperitoneal dose of cisplatin. Twenty-four hours later, samples were collected for further investigations. CIS-intoxication resulted in a significant decrease in the erythrogram along with thrombocytopenia leukopenia, and lymphopenia. Furthermore, CIS administration significantly elevated serum activity of liver enzymes, total, and indirect bilirubin as well serum glucose, total cholesterol, and triglycerides levels, meanwhile serum total protein, and globulin levels were significantly reduced. The hepatic MDA was markedly elevated with a concomitant decline in the hepatic antioxidant enzymes and severe alterations in the hepatic tissue architecture in CIS-intoxicated rats. Additionally, CIS-induced overexpression of hepatic Bax, caspase-3, and TNF-α, with no effect on hepatic expression of IL-10. Interestingly, HES pretreatment improved the CIS-induced hemato-biochemical, molecular and histopathological alterations. In conclusion, hesperidin hepato-protective effects against CIS might be mediated by its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
|
11
|
Effects of chemotherapeutic agents on male germ cells and possible ameliorating impact of antioxidants. Biomed Pharmacother 2021; 142:112040. [PMID: 34416630 DOI: 10.1016/j.biopha.2021.112040] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
Treatment of cancer in young adults is associated with several side effects, particularly in the reproductive system. Detrimental effects of chemotherapy on the germ cells depend on many factors including primary semen parameters, the way of drug administration, the kind and dose of chemotherapeutic regimens, and the phase of spermatogenesis during the time of drug administration. Lack of appropriate fertility preservation treatments particularly in the affected children necessitates the introduction of methods to amend the harmful effects of chemotherapeutic agents on male germ cells. Several studies have assessed the toxic effects of chemotherapeutic agents in rodent models and tested a number of antioxidants to evaluate their possible impact on the preservation of sperm cells. In the present manuscript, we describe the effects of the mostly investigated chemotherapeutic drugs in this regard i.e., cisplatin, doxorubicin, paclitaxel, 5-fluorouracil, and cyclophosphamide. As several in vivo and in vitro studies have shown the impact of antioxidants on chemotherapy-induced damage of sperms, we also describe the protective effects of antioxidants in this regard.
Collapse
|
12
|
Makled MN, Said E. Tranilast abrogates cisplatin-induced testicular and epididymal injuries: An insight into its modulatory impact on apoptosis/proliferation. J Biochem Mol Toxicol 2021; 35:e22817. [PMID: 34047436 DOI: 10.1002/jbt.22817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Cisplatin is a chemotherapeutic agent whose therapeutic use is greatly limited by the associated organs' toxicity and particularly, testicular toxicity. Cisplatin-induced testicular damage reported being mediated through mitochondria-mediated apoptosis, inflammation, and oxidative stress. Evidence showed that tranilast (TRN) has the ability to restore the oxidative status and modulate TRAIL/caspase-8 signaling. This led us to hypothesize that TRN could abrogate cisplatin-induced testicular and epididymal injuries via inhibiting oxidative stress and modulating proliferation and TRAIL/caspase-8/cJNK signaling. Cisplatin injection induced oligospermia and abnormalities in testicular and epididymal structure along with impaired oxidative status. TRN administration (100 or 300 mg/kg) for 7 days post-cisplatin injection preserved spermatogenesis and restored testicular and epididymal architecture, but restoration was more so in TRN300 than TRN100. This was in line with the restoration of balanced oxidative status as indicated by the increased total antioxidant capacity, glutathione and superoxide dismutase activity, and the decreased malondialdehyde content in testes (p < 0.05 vs. cisplatin). TRN increased the cell proliferation revealed by the increased expression of proliferating cell nuclear antigen in a dose-dependent manner (p < 0.05 vs. cisplatin) whereas only TRN300 decreased testicular cJNK, TRAIL, and caspase-8 expression (p < 0.05 vs. cisplatin). Moreover, TRN dose-dependently inhibited the pro-inflammatory transcription factor NF-kB and the cytokine TNF-α expressions in testes. In conclusion, TRN300 was more effective than TRN100 in alleviating cisplatin-induced testicular and epididymal injuries and in enhancing spermatogenesis. This curative effect of TRN might be mediated through its antioxidant and anti-inflammatory impacts along with its modulatory impact on cJNK/TRAIL/caspase-8 signaling favoring proliferation rather than apoptosis.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Schorn S, Dicke AK, Neugebauer U, Schröter R, Friedrich M, Reuter S, Ciarimboli G. Expression and Function of Organic Cation Transporter 2 in Pancreas. Front Cell Dev Biol 2021; 9:688885. [PMID: 34124075 PMCID: PMC8195675 DOI: 10.3389/fcell.2021.688885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Organic cation transporters (OCT) play an important role in mediating cellular uptake of several pharmaceuticals, such as the antidiabetic drug metformin and the platinum-derived chemotherapeutics. Since these drugs can also affect the pancreas, here it was investigated whether these transporters are expressed in this organ. An interaction between OCT2 and the glucose transporter 2 (GLUT2), which is expressed with important functional consequences in the kidneys and in the pancreas, has already been demonstrated elsewhere. Therefore, here it was further investigated whether the two proteins have a functional relationship. It was demonstrated that OCT2 is expressed in pancreas, probably in β cells of Langerhans islets, together with GLUT2. However, a co-localization was only evident in a cell-line model of rat pancreatic β cells under incubation with high glucose concentration. High glucose stimulated OCT2 expression and activity. On the other side, studies conducted in human embryonic kidney cells stably expressing OCT2, showed that overexpression of GLUT2 decreased OCT2 activity. Unfortunately, pull-down experiments aimed to confirm a physical OCT2/GLUT2 interaction were not successful. Renal glucose excretion was reduced in mice with genetic deletion of OCT2. Nonetheless, in these mice no regulation of known kidney glucose transporters was measured. Therefore, it may be speculated that OCT2 may influence cellular trafficking of GLUT2, without changing its amount. OCT2 may play a role in drug uptake of the pancreas, and its activity may be regulated by glucose and GLUT2. Vice versa, GLUT2 activity may be regulated through an interaction with OCT2.
Collapse
Affiliation(s)
- Sandra Schorn
- Experimental Nephrology, Medicine Clinic D, University Hospital Münster, Münster, Germany
| | - Ann-Kristin Dicke
- Experimental Nephrology, Medicine Clinic D, University Hospital Münster, Münster, Germany
| | - Ute Neugebauer
- Experimental Nephrology, Medicine Clinic D, University Hospital Münster, Münster, Germany
| | - Rita Schröter
- Experimental Nephrology, Medicine Clinic D, University Hospital Münster, Münster, Germany
| | - Maren Friedrich
- Experimental Nephrology, Medicine Clinic D, University Hospital Münster, Münster, Germany
| | - Stefan Reuter
- Experimental Nephrology, Medicine Clinic D, University Hospital Münster, Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Medicine Clinic D, University Hospital Münster, Münster, Germany
| |
Collapse
|
14
|
Taguchi Y, Turki T. Universal Nature of Drug Treatment Responses in Drug-Tissue-Wide Model-Animal Experiments Using Tensor Decomposition-Based Unsupervised Feature Extraction. Front Genet 2020; 11:695. [PMID: 32973862 PMCID: PMC7469919 DOI: 10.3389/fgene.2020.00695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/05/2020] [Indexed: 01/10/2023] Open
Abstract
Gene expression profiles of tissues treated with drugs have recently been used to infer clinical outcomes. Although this method is often successful from the application point of view, gene expression altered by drugs is rarely analyzed in detail, because of the extremely large number of genes involved. Here, we applied tensor decomposition (TD)-based unsupervised feature extraction (FE) to the gene expression profiles of 24 mouse tissues treated with 15 drugs. TD-based unsupervised FE enabled identification of the common effects of 15 drugs including an interesting universal feature: these drugs affect genes in a gene-group-wide manner and were dependent on three tissue types (neuronal, muscular, and gastroenterological). For each tissue group, TD-based unsupervised FE enabled identification of a few tens to a few hundreds of genes affected by the drug treatment. These genes are distinctly expressed between drug treatments and controls as well as between tissues in individual tissue groups and other tissues. We also validated the assignment of genes to individual tissue groups using multiple enrichment analyses. We conclude that TD-based unsupervised FE is a promising method for integrated analysis of gene expression profiles from multiple tissues treated with multiple drugs in a completely unsupervised manner.
Collapse
Affiliation(s)
- Yh. Taguchi
- Department of Physics, Chuo University, Tokyo, Japan
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|