1
|
Pereira F, Bedda L, Tammam MA, Alabdullah AK, Arafa R, El-Demerdash A. Investigating the antiviral therapeutic potentialities of marine polycyclic lamellarin pyrrole alkaloids as promising inhibitors for SARS-CoV-2 and Zika main proteases (Mpro). J Biomol Struct Dyn 2024; 42:3983-4001. [PMID: 37232419 DOI: 10.1080/07391102.2023.2217513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The new coronavirus variant (SARS-CoV-2) and Zika virus are two world-wide health pandemics. Along history, natural products-based drugs have always crucially recognized as a main source of valuable medications. Considering the SARS-CoV-2 and Zika main proteases (Mpro) as the re-production key element of the viral cycle and its main target, herein we report an intensive computer-aided virtual screening for a focused list of 39 marine lamellarins pyrrole alkaloids, against SARS-CoV-2 and Zika main proteases (Mpro) using a set of combined modern computational methodologies including molecular docking (MDock), molecule dynamic simulations (MDS) and structure-activity relationships (SARs) as well. Indeed, the molecular docking studies had revealed four promising marine alkaloids including [lamellarin H (14)/K (17)] and [lamellarin S (26)/Z (39)], according to their notable ligand-protein energy scores and relevant binding affinities with the SARS-CoV-2 and Zika (Mpro) pocket residues, respectively. Consequentially, these four chemical hits were further examined thermodynamically though investigating their MD simulations at 100 ns, where they showed prominent stability within the accommodated (Mpro) pockets. Moreover, in-deep SARs studies suggested the crucial roles of the rigid fused polycyclic ring system, particularly aromatic A- and F- rings, position of the phenolic -OH and δ-lactone functionalities as essential structural and pharmacophoric features. Finally, these four promising lamellarins alkaloids were investigated for their in-silico ADME using the SWISS ADME platform, where they displayed appropriated drug-likeness properties. Such motivating outcomes are greatly recommending further in vitro/vivo examinations regarding those lamellarins pyrrole alkaloids (LPAs).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Loay Bedda
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Reem Arafa
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Amr El-Demerdash
- Division of Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura, Egypt
- Department of Biochemistry and Metabolism, the John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
2
|
Wei M, Chen J, Song Y, Monserrat JP, Zhang Y, Shen L. Progress on synthesis and structure-activity relationships of lamellarins over the past decade. Eur J Med Chem 2024; 269:116294. [PMID: 38508119 DOI: 10.1016/j.ejmech.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Lamellarins are polyaromatic alkaloids isolated from marine organisms, including mollusks, tunicates, and sponges. Currently, over 60 structurally distinct natural lamellarins have been reported, and most of them exhibit promising biological activities, such as topoisomerase inhibition, mitochondrial function inhibition, multidrug resistance reversing, and anti-HIV activity. There has also been a significant progress on the synthetic study of lamellarins which has been regularly updated by numerous medicinal chemists as well. This review provides a detailed summary of the synthesis, pharmacology, and structural modification of lamellarins over the past decades.
Collapse
Affiliation(s)
- Mingze Wei
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China
| | - Jing Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China
| | - Yuliang Song
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China
| | | | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Li Shen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, 310061, Hangzhou, China.
| |
Collapse
|
3
|
Farha AK, Li Z, Xu Y, Bordiga M, Sui Z, Corke H. Anti-quorum sensing effects of batatasin III: in vitro and in silico studies. J Biomol Struct Dyn 2023; 41:11341-11352. [PMID: 36871957 DOI: 10.1080/07391102.2023.2187226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/07/2022] [Indexed: 03/07/2023]
Abstract
The spread of multidrug resistant bacteria has fueled the development of new antibiotics to combat bacterial infections. Disrupting the quorum sensing (QS) mechanism with biomolecules is a promising approach against bacterial infections. Plants used in Traditional Chinese Medicine (TCM) represent a valuable resource for the identification of QS inhibitors. In this study, the in vitro anti-QS activity of 50 TCM-derived phytochemicals against the biosensor Chromobacterium violaceum CV026 was tested. Among the 50 phytochemicals, 7-methoxycoumarin, flavone, batatasin III, resveratrol, psoralen, isopsoralen, and rhein inhibited violacein production and showed good QS inhibitory effects. Batatasin III was selected as the best QS inhibitor based on drug-likeness, physicochemical properties, toxicity, and bioactivity score prediction analyses using SwissADME, PreADMET, ProtoxII, and Molinspiration. At 30 μg/ mL, Batatasin III inhibited violacein production and biofilm formation in C. violaceum CV026 by more than 69% and 54% respectively without affecting bacterial growth. The in vitro cytotoxicity evaluation by MTT assay demonstrated that batatasin III reduced the viability of 3T3 mouse fibroblast cells to 60% at 100 μg/mL. Furthermore, molecular docking studies showed that batatasin III has strong binding interactions with the QS-associated proteins CViR, LasR, RhlR, PqsE, and PqsR. Molecular dynamic simulation studies showed that batatasin III has strong binding interactions with 3QP1, a structural variant of CViR protein. The binding free energy value of batatasin III-3QP1 complex was -146.295 ± 10.800 KJ/mol. Overall results suggested that batatasin III could serve as a lead molecule that could be developed into a potent QS inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Zijun Li
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yijuan Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Zhongquan Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Mbhele N, Gordon M. Structural effects of HIV-1 subtype C integrase mutations on the activity of integrase strand transfer inhibitors in South African patients. J Biomol Struct Dyn 2022; 40:12546-12556. [PMID: 34488561 DOI: 10.1080/07391102.2021.1972840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 integrase enzyme is responsible for the integration of viral DNA into the host genomic DNA. Integrase strand transfer inhibitors (INSTIs) are highly potent antiretroviral agents that inhibit this process, and are internationally approved for the treatment of both naïve and treated HIV-1 patients. However, their long-term efficacy is threatened by development of drug resistance strains resulting in resistance mutations. This work aimed to examine the effect of INSTI resistance-associated mutations (RAMs) and polymorphisms on the structure of HIV-1 subtype C (HIV-1C) integrase. Genetic analysis was performed on seven HIV-1C infected individuals with virologic failure after at least 6 months of INSTI-based antiretroviral therapy, presenting at the King Edward VIII hospital in Durban, South Africa. These were compared with sequences from 41 INSTI-naïve isolates. Integrase structures of selected isolates were modeled on the SWISS model online server. Molecular docking and dynamics simulations were also conducted using AutoDock-Vina and AMBER 18 force fields, respectively. Only one INSTI-treated isolate (14.28%) harboured major mutations (G140A + Q148R) as well as the E157Q minor mutation. Interestingly, S119T and V151I were only found in patients failing raltegravir (an INSTI drug). Molecular modeling and docking showed that RAMs and polymorphisms associated with INSTI-based therapy affect protein stability and this is supported by their weakened hydrogen-bond interactions compared to the wild-type. To the best of our knowledge, this is the first study to identify a double mutant in the 140's loop region from South African HIV-1C isolates and study its effects on Raltegravir, Elvitegravir, and Dolutegravir binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nokuzola Mbhele
- Department of Virology, College of Health Sciences, University of KwaZulu-Natal, Doris Duke Medical Research Institute, Durban, South Africa
| | - Michelle Gordon
- Department of Virology, College of Health Sciences, University of KwaZulu-Natal, Doris Duke Medical Research Institute, Durban, South Africa
| |
Collapse
|
5
|
Silyanova EA, Samet AV, Semenov VV. A Two-Step Approach to a Hexacyclic Lamellarin Core via 1,3-Dipolar Cycloaddition of Isoquinolinium Ylides to Nitrostilbenes. J Org Chem 2022; 87:6444-6453. [PMID: 35467869 DOI: 10.1021/acs.joc.2c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 1,3-dipolar cycloaddition reaction of isoquinolinium ylides to nitrostilbenes provides an approach to 1,2-diarylpyrrolo[2,1-a]isoquinolinium-3-carboxylates and then to a complete hexacyclic lamellarin core.
Collapse
Affiliation(s)
- E A Silyanova
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - A V Samet
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| | - V V Semenov
- N. D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospect, 119991 Moscow, Russian Federation
| |
Collapse
|
6
|
Unique Mode of Antiviral Action of a Marine Alkaloid against Ebola Virus and SARS-CoV-2. Viruses 2022; 14:v14040816. [PMID: 35458549 PMCID: PMC9028129 DOI: 10.3390/v14040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.
Collapse
|
7
|
Manzer HS, Villarreal RI, Doran KS. Targeting the BspC-vimentin interaction to develop anti-virulence therapies during Group B streptococcal meningitis. PLoS Pathog 2022; 18:e1010397. [PMID: 35316308 PMCID: PMC8939794 DOI: 10.1371/journal.ppat.1010397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial infections are a major cause of morbidity and mortality worldwide and the rise of antibiotic resistance necessitates development of alternative treatments. Pathogen adhesins that bind to host cells initiate disease pathogenesis and represent potential therapeutic targets. We have shown previously that the BspC adhesin in Group B Streptococcus (GBS), the leading cause of bacterial neonatal meningitis, interacts with host vimentin to promote attachment to brain endothelium and disease development. Here we determined that the BspC variable (V-) domain contains the vimentin binding site and promotes GBS adherence to brain endothelium. Site directed mutagenesis identified a binding pocket necessary for GBS host cell interaction and development of meningitis. Using a virtual structure-based drug screen we identified compounds that targeted the V-domain binding pocket, which blocked GBS adherence and entry into the brain in vivo. These data indicate the utility of targeting the pathogen-host interface to develop anti-virulence therapeutics.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Ricardo I. Villarreal
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| |
Collapse
|
8
|
Sadafi Kohnehshahri M, Chehardoli G, Bahiraei M, Akbarzadeh T, Ranjbar A, Rastegari A, Najafi Z. Novel tacrine-based acetylcholinesterase inhibitors as potential agents for the treatment of Alzheimer's disease: Quinolotacrine hybrids. Mol Divers 2021; 26:489-503. [PMID: 34491490 DOI: 10.1007/s11030-021-10307-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
A new series of quinolotacrine hybrids including cyclopenta- and cyclohexa-quinolotacrine derivatives were designed, synthesized, and assessed as anti-cholinesterase (ChE) agents. The designed derivatives indicated higher inhibitory effect on the acetylcholinesterase (AChE) with IC50 values of 0.285-100 µM compared to butyrylcholinesterase (BChE) with IC50 values of > 100 µM. Of these compounds, cyclohexa-quinolotacrine hybrids displayed a little better anti-AChE activity than cyclopenta-quinolotacrine hybrids. Compound 8-amino-7-(3-hydroxyphenyl)-5,7,9,10,11,12-hexahydro-6H-pyrano[2,3-b:5,6-c'] diquinolin-6-one (6m) including 3-hydroxyphenyl and cyclohexane ring moieties exhibited the best AChE inhibitory activity with IC50 value of 0.285 µM. The kinetic and molecular docking studies indicated that compound 6m occupied both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE as a mixed inhibitor. Using neuroprotective assay against H2O2-induced cell death in PC12 cells, the compound 6h illustrated significant protection among the assessed compounds. In silico ADME studies estimated good drug-likeness for the designed compounds. As a result, these quinolotacrine hybrids can be very encouraging AChE inhibitors to treat Alzheimer's disease. A novel series of quinolotacrine hybrids were designed, synthesized, and evaluated against AChE and BChE enzymes as potential agents for the treatment of AD. The hybrids showed good to significant inhibitory activity against AChE (0.285-100 μM) compared to butyrylcholinesterase (BChE) with IC50 values of > 100 μM. Among them, compound 8-amino-7-(3-hydroxyphenyl)-5,7,9,10,11,12-hexahydro-6H-pyrano[2,3-b:5,6-c'] diquinolin-6-one (6 m) bearing 3-hydroxyphenyl moiety and cyclohexane ring exhibited the highest anti-AChE activity with IC50 value of 0.285 μM. The kinetic and molecular docking studies illustrated that compound 6 m is a mixed inhibitor and binds to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE.
Collapse
Affiliation(s)
- Mehrdad Sadafi Kohnehshahri
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoomeh Bahiraei
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rastegari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
9
|
Yang F, Yang J, Zhang Z, Tu G, Yao X, Xue W, Zhu F. Recent Advances in Computer-aided Antiviral Drug Design Targeting HIV-1 Integrase and Reverse Transcriptase Associated Ribonuclease H. Curr Med Chem 2021; 29:1664-1676. [PMID: 34238145 DOI: 10.2174/0929867328666210708090123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) has been a chronic, life-threatening disease for a long time. However, a broad range of antiretroviral drug regimens are applicable for the successful suppression of virus replication in human immunodeficiency virus type 1 (HIV-1) infected people. The mutation-induced drug resistance problems during the treatment of AIDS forced people to continuously look for new antiviral agents. HIV-1 integrase (IN) and reverse transcriptase associated ribonuclease (RT-RNase H), two pivotal enzymes in HIV-1 replication progress, has gain popularity as drug-able targets for designing novel HIV-1 antiviral drugs. During the development of HIV-1 IN and/or RT-RNase H inhibitors, computer-aided drug design (CADD), including homology modeling, pharmacophore, docking, molecular dynamics (MD) simulation, and binding free energy calculation, represents a significant tool to accelerate the discovery of new drug candidates and reduce costs in antiviral drug development. In this review, we summarized the recent advances in the design of single-and dual-target inhibitors against HIV-1 IN or/and RT-RNase H as well as the prediction of mutation-induced drug resistance based on computational methods. We highlighted the results of the reported literature and proposed some perspectives on the design of novel and more effective antiviral drugs in the future.
Collapse
Affiliation(s)
- Fengyuan Yang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Jingyi Yang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Zhao Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| |
Collapse
|
10
|
Synthesis, Antimicrobial Activity, Anti‐HIV Activity, and Molecular Docking of Novel 5‐, 6‐ and 7‐Membered Ring (1
H
‐Pyrrol‐2‐yl)aminolactams. ChemistrySelect 2021. [DOI: 10.1002/slct.202004755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Rafi MO, Al-Khafaji K, Tok TT, Rahman MS. Computer-based identification of potential compounds from Salviae miltiorrhizae against Neirisaral adhesion A regulatory protein. J Biomol Struct Dyn 2020; 40:4301-4313. [PMID: 33289608 DOI: 10.1080/07391102.2020.1856189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In silico studies are attracting considerable interest due to their ability to understand protein-ligand interactions at the atomic level. The main principal tools of this in silico analyses are molecular docking and molecular dynamic (MD) simulation. This paper examines how can natural compounds that are derived from Salviae miltiorrhizae to block Neisseria adhesion A Regulatory protein (NadR). In molecular docking analysis, only four compounds were found in higher binding affinity with NadR among 10 candidates (tanshinol B, tanshinol A, lithospermic acid and tournefolal were -7.61, -7.56, -8.22 and -7.81 kcal/mol, respectively, compared to -7.23 kcal/mol of native ligand). Absorption, distribution, metabolism, excretion (ADME) and toxicity properties, medicinal chemistry profile, and physicochemical features were displayed that tournefolal contains good properties to work as a safe and good anti-adhesive drug. Therefore, the complexes of these four ligands with NadR protein were subjected to 100 ns of MD simulation. RMSD, RMSF, RG and hydrogen bonding exhibited that tournefolal showed stable binding affinity and molecular interaction with NadR protein. In light of these results, there is now a need to conduct much more in vitro and in vivo studies about the efficacy of tournefolal.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Khattab Al-Khafaji
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
| | - Tugba Taskin Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey.,Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
12
|
Kheeree N, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Choowongkomon K, Karnchanatat A. ACE inhibitory peptides derived from de-fatted lemon basil seeds: optimization, purification, identification, structure–activity relationship and molecular docking analysis. Food Funct 2020; 11:8161-8178. [DOI: 10.1039/d0fo01240h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The study determines optimized process conditions to maximize ACE inhibitory peptide production. The two novel hexa-peptides (LGRNLPPI and GPAGPAGL) from de-fatted lemon basil seeds (DLBS) was achieved.
Collapse
Affiliation(s)
- Norhameemee Kheeree
- Program in Biotechnology
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics
- Faculty of Tropical Medicine
- Mahidol University
- Bangkok 10400
- Thailand
| | | | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|