1
|
Binici B, Borah A, Watts JA, McLoughlin D, Perrie Y. The influence of citrate buffer molarity on mRNA-LNPs: Exploring factors beyond general critical quality attributes. Int J Pharm 2025; 668:124942. [PMID: 39537041 DOI: 10.1016/j.ijpharm.2024.124942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Lipid nanoparticles (LNPs) are crucial in delivering mRNA vaccines and therapeutics. The properties of LNPs can be influenced by the choice of lipids and the manufacturing conditions, such as mixing parameters, lipid concentration, and the type and concentration of the aqueous buffer used. In this study, we investigated the impact of the citrate buffer molarity, the buffer commonly used to dissolve mRNA in the preparation of mRNA-LNPs. We prepared SM-102 LNPs containing firefly luciferase mRNA using citrate buffers at molarities of 50 mM, 100 mM, or 300 mM. Our findings revealed that varying the molarity of the citrate buffer did not significantly affect the particle size when considering the average diameter (z-average or Mode). All formulations exhibited low polydispersity index (PDI) and high encapsulation efficiency. Detailed analysis of particle size sub-populations (D10, D50, and D90) and morphology indicated that citrate buffer concentration might influence lipid packing during LNP production, though these differences were subtle. However, using higher citrate molarity (300 mM) to produce LNPs notably reduced cellular internalisation and in vitro transfection efficiency. This trend was also observed in vivo, where similar expression levels were noted in mice receiving the 50 mM and 100 mM LNP formulations, but lower expression was seen for the 300 mM formulation. Our study highlights the importance of buffer molarity in the aqueous phase during mRNA-based LNP preparation and that generally reported critical quality attributes (CQAs) for LNPs may not detect subtle formulation differences.
Collapse
Affiliation(s)
- Burcu Binici
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, University of Strathclyde, Glasgow, Scotland, G4 0RE, UK
| | - Ankita Borah
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, University of Strathclyde, Glasgow, Scotland, G4 0RE, UK
| | - Julie A Watts
- School of Pharmacy, University of Nottingham, University Park, Nottingham, England NG7 2RD, UK
| | - Daragh McLoughlin
- Center for Process Innovation, The Coxon Building, John Walker Road, Sedgefield, England TS21 3FE, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, University of Strathclyde, Glasgow, Scotland, G4 0RE, UK.
| |
Collapse
|
2
|
Oz S, Saar G, Olszakier S, Heinrich R, Kompanets MO, Berlin S. Datasets assessing lipid-content in optically cleared brains. Data Brief 2024; 52:109795. [PMID: 38146303 PMCID: PMC10749242 DOI: 10.1016/j.dib.2023.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/27/2023] Open
Abstract
Multi-modal imaging, by light-microscopy (LM) and Magnetic Resonance Imaging (MRI), holds promise for examining the brain across various resolutions and scales. While MRI acquires images in three dimensions, acquisition of intact whole-brain by LM requires a process of tissue clearing that renders the brain transparent. Removal of lipids (delipidation) is a critical step in the tissue clearing process, and was previsouly suggested to be the cause for absence of MRI contrast in cleared brains. Yet, the association between MRI contrast, delipidation and the different clearing techniques is debatable. Here, we provide datasets concerning lipid-content in cleared brain tissues obtained by various approaches. Fixed mouse and rat brains were cleared by CLARITY, Scale, uDISCO and ECi clearing techniques. Lipid-content was assessed at various intermediate steps of the different clearing methods, as well as at the end of the processes. Methods employed included whole brain MRI acquisition, Oil Red O (ORO)- and carbocyanine DiI-staining of cryosections, and DiI-washout assay from brain slices. MRI contrast-to-noise ratio, staining intensities and integrity of tissue were systematically analyzed. We demonstrate that lipid electrophoresis, an essential step of the CLARITY approach, engenders progressive reduction in MRI contrast in non-cleared (PFA-fixed) control brains, as well as strongly reduces contrast from uDISCO and ECi-cleared brains. ORO minimally stained CLARITY-cleared brains, however efficiently labelled uDISCO and ECi-cleared brains. Conversely, and in contrast to ORO-staining, DiI equally stained control, CLARITY, ECi and uDISCO-cleared brains. Both ORO- and DiI-staining demonstrated impairment in brain tissue integrity following CLARITY, but less so in uDISCO and ECi brains. DiI-washout assay demonstrated that each of the solvents employed along the process of uDISCO and ECi are highly delipidating, as well as the SDS-electrophoresis employed during CLARITY clearing. However, Scale treatment preserved most of the DiI dye. These data emphasize the variability in lipid assessment of cleared tissues by common techniques, and may help to resolve the contribution of lipids in brain MRI contrast.
Collapse
Affiliation(s)
- Shimrit Oz
- Department of Neuroscience, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shunit Olszakier
- Department of Neuroscience, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mykhail O. Kompanets
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Shai Berlin
- Department of Neuroscience, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Mafruchati M, Othman NH. Fibroblast test cells of embryo of Super Java Chicken as an indicator to test toxicity and malignancy. Heliyon 2023; 9:e22349. [PMID: 38125449 PMCID: PMC10730434 DOI: 10.1016/j.heliyon.2023.e22349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Fibroblast is one component of connective tissue cells in polygonal or stellate with cytoplasmic processes or projections. In vitro, tissue culture is an excellent medium used in biomedical research. The goal of this study was to analyze Toxicity and Malignancy in Embryo of Super Java Chicken as Potential Candidates of Strong Poultry in Indonesia. This study used Preparation of fibroblast primary cell culture of Java super chicken embryos, Pathogenicity test using fibroblast cells from Super Java chicken, Toxicity test using fibroblast cells from Super Java Chicken. Primary fibroblast cell culture of Java super chicken embryos was prepared from 10-day-old brood chicken eggs free of pathogens. Cells were prepared in 96-well microplates with minimal essential medium (MEM) containing 10 % fetal calf serum (FCS) 100 IU/ug penicillin/streptomycinVirus isolates were diluted in stages from 10-2 to 10-5 and inoculated into Java Super Chicken Fibroblast cell culture. The result showed that the negative control of the samples had a faster proliferative power than the fibroblast cell culture of Java super chicken, which was treated with concentrations of 10-2; 10-3; 10-4; 10-5. Moreover, before being inoculated with the virus, the confluent fibroblast cells of Java super chicken looked oval and regular. The day after infection, syncytia (large multinucleated cells) began to form on a small scale and became more pronounced on the second and third post-infection days. CPE was found in the 10-2,10-3 and 10-4 virus dilutions, and CPE was not found in the 10-5 dilution.
Collapse
Affiliation(s)
- Maslichah Mafruchati
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine (60115), Universitas Airlangga, Mayoress, C Campus, Surabaya, Indonesia
| | - Nor Hayati Othman
- Department of Pathology, School of Medical Science, Universiti Sains Malaysia, Malaysia
| |
Collapse
|
4
|
Wang QW, Xu JY, Li HX, Su YD, Song JW, Song ZP, Song SS, Dong B, Wang SX, Li B. A simple and accurate method to quantify real-time contraction of vascular smooth muscle cell in vitro. Vascul Pharmacol 2023; 149:107146. [PMID: 36724828 DOI: 10.1016/j.vph.2023.107146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Vascular smooth muscle cells (VSMCs) constitute the medial layer of the blood vessel wall. Their contractile state regulates blood flow in physiological and pathological conditions. Current methods for assessing the contractility of VSMCs are not amenable to the high-throughput screening of pharmaceutical compounds. This study aimed to develop a method to address this shortcoming in the field. Real-time contraction was visualized in living VSMCs using the exogenous expression of green fluorescent protein (GFP). Image-Pro Plus software (IPPS) was used to measure various morphological cell indices. In phenylephrine-treated VSMCs, GFP fluorescence imaging was more accurate than brightfield imaging or phalloidin staining in representing VSMC morphology, as measured using IPPS. Among the multiple indices of VSMC shape, area and mean-diameter were more sensitive than length in reflecting the morphological changes in VSMC. We developed a new index, compound length, by combining the mean-diameter and length to differentiate contracted and uncontracted VSMCs. Based on the compound length, we further generated a contraction index to define a single-VSMC contractile status as single-VSMC contraction-index (SVCI). Finally, compound length and SVCI were validated to effectively assess cell contraction in VSMCs challenged with U46619 and KCl. In conclusion, GFP-based indices of compound length and SVCI can accurately quantify the real-time contraction of VSMCs. In future, the new method will be applied to high-throughput drug screening or basic cardiovascular research.
Collapse
Affiliation(s)
- Qian-Wen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jia-Yao Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui-Xin Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Dong Su
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhi-Peng Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Sha-Sha Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Bin Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Valigurová A, Kolářová I. Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania? Pathogens 2023; 12:pathogens12020246. [PMID: 36839518 PMCID: PMC9967396 DOI: 10.3390/pathogens12020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Leishmania spp. (Kinetoplastida) are unicellular parasites causing leishmaniases, neglected tropical diseases of medical and veterinary importance. In the vertebrate host, Leishmania parasites multiply intracellularly in professional phagocytes, such as monocytes and macrophages. However, their close relative with intracellular development-Trypanosoma cruzi-can unlock even non-professional phagocytes. Since Leishmania and T. cruzi have similar organelle equipment, is it possible that Leishmania can invade and even proliferate in cells other than the professional phagocytes? Additionally, could these cells play a role in the long-term persistence of Leishmania in the host, even in cured individuals? In this review, we provide (i) an overview of non-canonical Leishmania host cells and (ii) an insight into the strategies that Leishmania may use to enter them. Many studies point to fibroblasts as already established host cells that are important in latent leishmaniasis and disease epidemiology, as they support Leishmania transformation into amastigotes and even their multiplication. To invade them, Leishmania causes damage to their plasma membrane and exploits the subsequent repair mechanism via lysosome-triggered endocytosis. Unrevealing the interactions between Leishmania and its non-canonical host cells may shed light on the persistence of these parasites in vertebrate hosts, a way to control latent leishmaniasis.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Correspondence: (A.V.); (I.K.)
| | - Iva Kolářová
- Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
- Correspondence: (A.V.); (I.K.)
| |
Collapse
|
6
|
D’Angelo A, Vertuccio L, Leonelli C, Alzeer MIM, Catauro M. Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study. Polymers (Basel) 2023; 15:675. [PMID: 36771976 PMCID: PMC9919871 DOI: 10.3390/polym15030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Few studies have explored the immobilization of organic macromolecules within the geopolymer matrix, and some have found their chemical instability in the highly alkaline geopolymerization media. The present work reports on the feasibility of encapsulating the potentially toxic acridine orange (AO) dye in a metakaolin based geopolymer while maintaining its structural integrity. The proper structural, chemical, and mechanical stabilities of the final products were ascertained using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric (TGA/DTG), and mechanical analyses, whereas the dye integrity and its stability inside the geopolymer were investigated by the UV-Vis analysis. In addition, the antimicrobial activity was investigated. The FT-IR and XRD analyses confirmed the geopolymerization occurrence, whereas the TGA/DTG and mechanical (compressive and flexural) strength revealed that the addition of 0.31% (AO mg/ sodium silicate L) of AO to the fresh paste did not affect the thermal stability and the mechanical properties (above 6 MPa in flexural strength and above 20 MPa for compressive strength) of the hardened product. UV-Vis spectroscopy revealed that the dye did not undergo chemical degradation nor was it released from the geopolymer matrix. The results reported herein provide a useful approach for the safe removal of toxic macromolecules by means of encapsulation within the geopolymer matrix.
Collapse
Affiliation(s)
- Antonio D’Angelo
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma n. 29, 81031 Aversa, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Vertuccio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma n. 29, 81031 Aversa, Italy
| | - Cristina Leonelli
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Mohammad I. M. Alzeer
- Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90014 Oulu, Finland
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma n. 29, 81031 Aversa, Italy
| |
Collapse
|
7
|
Chitosan, chondroitin sulfate, and hyaluronic acid based in-situ forming scaffold for efficient cell grafting. Int J Biol Macromol 2023; 225:938-951. [PMID: 36410536 DOI: 10.1016/j.ijbiomac.2022.11.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Current cell grafting techniques are majorly dependent on seeding cells on a pre-formed scaffold. However, cells grow in a 2-dimensional (2D) space in such constructs, not mimicking the tissue's 3-dimensional (3D) architecture. The present study evaluated a unique poly-electrolyte complexation (PEC) based strategy for the 3D engraftment of cells in a porous polymeric scaffold. The scaffold was synthesized using a positively charged polysaccharide chitosan (CH) and negatively charged glycosaminoglycans chondroitin sulfate (CS) and hyaluronic acid (HA). Two different scaffolds were synthesized, one using CH and CS [CH-CS] and another using CH and CS + HA [CH-(CS-HA)]. The physicochemical characterization of both the PECs confirmed electrostatic interactions, leading to a porous and viscoelastic PEC formation. Fibroblast cells were grafted and seeded in both scaffolds to evaluate the effect of different scaffold compositions and the difference between seeded and grafted cells. Imaging studies confirmed that grafting of the fibroblast cells supports cellular proliferation. The qPCR studies demonstrated increased expression of functional markers TGF-β, α-SMA, collagen-I, and fibronectin in the CH-(CS-HA) grafted cells. In summary, it was demonstrated that an in-situ forming PEC of CH, CS, and HA had good physicochemical properties for cell grafting and supported grafted cells with improved function.
Collapse
|
8
|
Superparamagnetic Iron Oxide-Labeled Leishmania major Can Be Traced in Fibroblasts. J Parasitol Res 2023; 2023:7628912. [PMID: 36643716 PMCID: PMC9833902 DOI: 10.1155/2023/7628912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Leishmaniasis is still a neglected tropical disease that can endanger more than 350 million people among 98 countries. Leishmania can survive in fibroblasts as latent inactive forms. This study was conducted to evaluate the role of superparamagnetic iron oxide nanoparticles (SPIONs) in cell culture for tracking the labeled Leishmania major in fibroblasts. Methods Dextran-coated SPIONs were used for labeling L. major in co-culture of fibroblasts with the parasite. To quantify and trace SPION-labeled Leishmania, Prussian blue staining was undertaken. Fibroblast characterization was undertaken by real time polymerase chain reaction. Transmission electron microscope (TEM) was used for confirming the entry of the labeled L. major to the cytoplasm and the nucleus of the fibroblast. Results Fibroblasts were spindle-shaped and adherent to culture flasks. Promastigotes were with thin elongated lance-like morphology with an anterior kinetoplast and an emergent free flagellum. Prussian blue staining revealed that internalized SPIONs were localized within cytoplasm and nucleus of the fibroblasts after 24 hours of culture. Prussian blue staining successfully showed the presence of iron (stained blue) in labeled L. major within the fibroblasts. This finding was confirmed by TEM, and labeled L. major was detected in the fibroblast cytoplasm and nucleus too. Conclusion We can conclude that SPIONs are safe, inexpensive, easy to use, and accurate, and a fast method to label Leishmania parasite in cells that the parasite can be latent, such as fibroblasts. These findings can open a new window in diagnosis, pathogenesis, and treatment of cutaneous leishmaniasis and can be added to the literature.
Collapse
|
9
|
pH tolerant metal ion controlled luminescence behaviour of supramolecular assembly and its application in bioimaging and supramolecular logic gate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Marzban M, Rustamzadeh A, Asghari A, Terme Y, Amichi AG, Ghanbarzehi V, Holaso AS, Hosseini F, Shahraki M, Sadafi P, Hashemzahi E, Honardar M, Iravankhah M, Baloochi M, Yarmohammadi A, Ebrahimi P. Stem cell therapy for cuprizone model of multiple sclerosis focusing on the effectiveness of different injection methods and cell labeling. Acta Histochem 2022; 124:151953. [PMID: 36116321 DOI: 10.1016/j.acthis.2022.151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022]
Abstract
Multiple Sclerosis (MS) is a chronic and autoimmune disease of the central nervous system that causes inflammation in the brain and spinal cord, progressive degeneration of central nervous system tissue, damage to neuronal axons, and loss of function of central nervous system neurons. Experimental encephalomyelitis is an alternative animal model of MS that can simulate the symptoms of this disease. Cuprizone is one of the factors creating this model. Various researchers are testing the use of different cells to reduce the symptoms of cuprizone-demyelinated mice. The different injection methods explained in this article include intracerebral, intraperitoneal, intravenous, and intranasal. The intracerebral method, in contrast to the intranasal method, was widely employed by researchers. In each technique, the researchers try to inject a specific type of stem cell (SC) and monitor their efficiency. For monitoring SCs various labeling procedures are available, however, there is an upward trend in using magnetic resonance imaging (MRI). Two main barriers to using this method are high cost and complexity. In the current review, we try to make review cell therapy in the cuprizone model of MS.
Collapse
Affiliation(s)
- Mohsen Marzban
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aria Asghari
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Yousef Terme
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Vahid Ghanbarzehi
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Fateme Hosseini
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mahya Shahraki
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Paniz Sadafi
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Erfan Hashemzahi
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Minoo Honardar
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Marziyeh Iravankhah
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mehdi Baloochi
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Amin Yarmohammadi
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Italy
| |
Collapse
|
11
|
Mitra S, Munni YA, Dash R, Sultana A, Moon IS. Unveiling the effect of Withania somnifera on neuronal cytoarchitecture and synaptogenesis: A combined in vitro and network pharmacology approach. Phytother Res 2022; 36:2524-2541. [PMID: 35443091 DOI: 10.1002/ptr.7466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022]
Abstract
Withania somnifera (WS), is known for its remarkable contribution in herbal medicine and Ayurveda, which is therapeutically applied to improve memory and anxiety in patients. However, the pharmacological details of this plant on memory boosting yet remained undefined. This study provides mechanistic insights on the effect of ethanol solution extract of the whole plant of WS (WSEE) on neuritogenesis by combining in vitro and in silico network pharmacology approaches. WSEE promoted significant neuronal growth through early differentiation, axodendritic arborization, and synaptogenesis on primary hippocampal neurons. The network pharmacological study confirmed that the neuritogenic activity is potentially mediated by modulating the neurotrophin signaling pathway, where NRTK1 (TrkA) was revealed as the primary target of WS secondary metabolites. This neurotrophic activity of WSEE was significantly stifled by the presence of TrkA inhibitor, which further confirms the TrkA-dependent activity of WSEE. In addition, a molecular docking study suggested steroidal lactones present in the WS might act as nerve growth factor (NGF)-mimetics, activating TrkA by binding to the NGF-binding domain. As a whole, the findings of the study suggest a significant role of WSEE on neuritogenesis and its potential to function as a therapeutic agent and in drug designing for the prevention and treatment of memory-related neurological disorders.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Armin Sultana
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| |
Collapse
|
12
|
Davoodi T, Khamesipour A, Shahabi S, Gholizadeh F, Pourkamal D, Hatam G. Geographical distribution and molecular epidemiology of cutaneous leishmaniasis in Fars Province, southern Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4024-4032. [PMID: 34396481 DOI: 10.1007/s11356-021-15865-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Cutaneous leishmaniasis (CL) is one of the important zoonotic diseases in Iran, particularly in Fars Province, southern Iran. The purpose of this descriptive cross-sectional study was to investigate the molecular identification and geographical distribution of anthroponotic and zoonotic CL in southern Iran, during 2018-2019. Overall, 161 patients with CL referred to the Leishmaniasis Diagnostic Laboratory, Valfajr Health Center, Shiraz, Iran, were included in this study. The smears were prepared from the lesion borders of patients and stained with Giemsa and diagnosed microscopically. For molecular identification, the genomic DNA of each sample was extracted, and PCR method was used. The geographical distribution map was prepared using ArcMap software. Finally, the possible correlation between the frequencies of CL in various subgroups was statistically analyzed by Chi-square test, using SPSS software. Of 161 positive samples confirmed by both microscopy and PCR, 126 (78.3%) and 35 (21.7%) samples were shown to be L. major and L. tropica, respectively. Also, 87 (54%) patients were male, and 74 (46%) were female. The study showed that anthroponotic cutaneous leishmaniasis (ACL) was detected only in Shiraz city, while zoonotic cutaneous leishmaniasis (ZCL) was observed both in Shiraz and most counties of Fars Province. Furthermore, the most CL infections occurred in district 8 among the different districts of Shiraz municipality, which requires serious attention.
Collapse
Affiliation(s)
- Tahereh Davoodi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Shahabi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Gholizadeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Daniel Pourkamal
- Valfajr Health Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Sharma M, Anand P, Padwad YS, Dogra V, Acharya V. DNA damage response proteins synergistically affect the cancer prognosis and resistance. Free Radic Biol Med 2022; 178:174-188. [PMID: 34848370 DOI: 10.1016/j.freeradbiomed.2021.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Amplification of oxidative stress can be utilized as a strategy to attenuate cancer progression by instigating apoptosis. However, the duration of positive response to such therapies is limited, as cancer cells eventually develop resistance. The underlying molecular mechanisms of cancer cells to escape apoptosis under oxidative stress is unknown. Employing big data, and its integration with transcriptome, proteome and network analysis in six cancer types revealed system-level interactions between DNA damage response (DDR) proteins, including; DNA damage repair, cell cycle checkpoints and anti-apoptotic proteins. Cancer system biology is used to elucidate mechanisms for cancer progression, but networks defining mechanisms causing resistance is less explored. Using system biology, we identified DDR hubs between G1-S and M phases that were associated with bad prognosis. The increased expression of DDR network was involved in resistance under high oxidative stress. We validated our findings by combining H2O2 induced oxidative stress and DDR inhibitors in human lung cancer cells to conclude the necessity of targeting a 'disease-causing network'. Collectively, our work provides insights toward designing strategies for network pharmacology to combat resistance in cancer research.
Collapse
Affiliation(s)
- Meetal Sharma
- Functional Genomics and Complex System Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prince Anand
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vivek Dogra
- Plant Molecular Biology and Stress Signalling Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Sayed M, Krishnamurthy B, Pal H. Unraveling the salt induced modulation in the photophysical behavior of acridine orange dye on its interaction with natural DNA. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Kirke J, Jin XL, Zhang XH. Expression of a Tardigrade Dsup Gene Enhances Genome Protection in Plants. Mol Biotechnol 2020; 62:563-571. [PMID: 32955680 DOI: 10.1007/s12033-020-00273-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
DNA damage is one of the most impactful events in living organisms, leading to DNA sequence changes (mutation) and disruption of biological processes. A study has identified a protein called Damage Suppressor Protein (Dsup) in the tardigrade Ramazzotius varieornatus that has shown to reduce the effects of radiation damage in human cell cultures (Hashimoto in Nature Communications 7:12808, 2016). We have generated tobacco plants that express the codon-optimized tardigrade Dsup gene and examined their responses when treated with mutagenic chemicals, ultraviolet (UV) and ionizing radiations. Our studies showed that compared to the control plants, the Dsup-expressing plants grew better in the medium containing mutagenic ethylmethane sulfonate (EMS). RT-qPCR detected distinct expression patterns of endogenous genes involved in DNA damage response and repair in the Dsup plants in response to EMS, bleomycin, UV-C and X-ray radiations. Comet assays revealed that the nuclei from the Dsup plants appeared more protected from UV and X-ray damages than the control plants. Overall, our studies demonstrated that Dsup gene expression enhanced tolerance of plants to genomutagenic stress. We suggest the feasibility of exploring genetic resources from extremotolerant species such as tardigrades to impart plants with tolerance to stressful environments for future climate changes and human space endeavors.
Collapse
Affiliation(s)
- Justin Kirke
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Xiao-Lu Jin
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Xing-Hai Zhang
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|