1
|
Yin J, Yuan D, Xu Z, Wu Y, Chen Z, Xiang X. Significant Differences in Intestinal Bacterial Communities of Sympatric Bean Goose, Hooded Crane, and Domestic Goose. Animals (Basel) 2024; 14:1688. [PMID: 38891737 PMCID: PMC11170997 DOI: 10.3390/ani14111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
The host's physiological well-being is intricately associated with the gut microbiota. However, previous studies regarding the intestinal microbiota have focused on domesticated or captive birds. This study used high-throughput sequencing technology to identify the gut bacterial communities of sympatric bean geese, hooded cranes, and domestic geese. The results indicated that the gut bacterial diversity in domestic geese and hooded cranes showed considerably higher diversity than bean geese. The gut bacterial community compositions varied significantly among the three hosts (p < 0.05). Compared to the hooded crane, the bean goose and domestic goose were more similar in their genotype and evolutionary history, with less difference in the bacterial community composition and assembly processes between the two species. Thus, the results might support the crucial role of host genotypes on their gut microbiota. The gut bacteria of wild hooded cranes and bean geese had a greater capacity for energy metabolism compared to domestic geese, suggesting that wild birds may rely more on their gut microbiota to survive in cold conditions. Moreover, the intestines of the three hosts were identified as harboring potential pathogens. The relative abundance of pathogens was higher in the hooded crane compared to the other two species. The hooded crane gut bacterial community assemblage revealed the least deterministic process with the lowest filtering/selection on the gut microbiota, which might have been a reason for the highest number of pathogens result. Compared to the hooded crane, the sympatric bean goose showed the least diversity and relative abundance of pathogens. The intestinal bacterial co-occurrence network showed the highest stability in the bean goose, potentially enhancing host resistance to adverse environments and reducing the susceptibility to pathogen invasion. In this study, the pathogens were also discovered to overlap among the three hosts, reminding us to monitor the potential for pathogen transmission between poultry and wild birds. Overall, the current findings have the potential to enhance the understanding of gut bacterial and pathogenic community structures in poultry and wild birds.
Collapse
Affiliation(s)
- Jing Yin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Dandan Yuan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Ziqiu Xu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
| | - Yuannuo Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
| | - Zhong Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (J.Y.); (D.Y.); (Z.X.); (Y.W.)
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Chizhou 247230, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei 230601, China
| |
Collapse
|
2
|
Ruuskanen S. Early-life environmental effects on birds: epigenetics and microbiome as mechanisms underlying long-lasting phenotypic changes. J Exp Biol 2024; 227:jeb246024. [PMID: 38449325 DOI: 10.1242/jeb.246024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Although the long-lasting effects of variation in early-life environment have been well documented across organisms, the underlying causal mechanisms are only recently starting to be unraveled. Yet understanding the underlying mechanisms of long-lasting effects can help us predict how organisms will respond to changing environments. Birds offer a great system in which to study developmental plasticity and its underlying mechanisms owing to the production of large external eggs and variation in developmental trajectories, combined with a long tradition of applied, physiological, ecological and evolutionary research. Epigenetic changes (such as DNA methylation) have been suggested to be a key mechanism mediating long-lasting effects of the early-life environment across taxa. More recently, changes in the early-life gut microbiome have been identified as another potential mediator of developmental plasticity. As a first step in understanding whether these mechanisms contribute to developmental plasticity in birds, this Review summarizes how changes in early-life environment (both prenatal and postnatal) influence epigenetic markers and the gut microbiome. The literature shows how both early-life biotic (such as resources and social environment) and abiotic (thermal environment and various anthropogenic stressors) factors modify epigenetic markers and the gut microbiome in birds, yet data concerning many other environmental factors are limited. The causal links of these modifications to lasting phenotypic changes are still scarce, but changes in the hypothalamic-pituitary-adrenal axis have been identified as one putative pathway. This Review identifies several knowledge gaps, including data on the long-term effects, stability of the molecular changes, and lack of diversity in the systems studied, and provides directions for future research.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40500 Jyväskylä, Finland
- Department of Biology, University of Turku, Vesilinnankatu 5, 20500 Turku, Finland
| |
Collapse
|
3
|
Xiong X, Rao Y, Ma J, Wang Z, He Q, Gong J, Sheng W, Xu J, Zhu X, Tan Y, Yang Y. A catalog of microbial genes and metagenome-assembled genomes from the quail gut microbiome. Poult Sci 2023; 102:102931. [PMID: 37499616 PMCID: PMC10393819 DOI: 10.1016/j.psj.2023.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The gut microbiome plays an important role in quail feed efficiency, immunity, production, and even behavior. Gut microbial gene catalogs and reference genomes are important for understanding the quail gut microbiome. However, quail gut microbes are lacked sequenced genomes and functional information to date. In this study, we report the first catalog of the microbial genes and metagenome-assembled genomes (MAGs) in fecal and cecum luminal content samples from 3 quail breeds using deep metagenomic sequencing. We identified a total of 2,419,425 nonredundant genes in the quail genome catalog, and a total of 473 MAGs were reconstructed through binning analysis. At 95% average nucleotide identity, the 473 MAGs were clustered into 283 species-level genome bins (SGBs), of which 225 SGBs belonged to species without any available genomes in the current database. Based on the quail gene catalog and MAGs, we identified 142 discriminative bacterial species and 244 discriminative MAGs between Chinese yellow quails and Japanese quails. The discriminative MAGs suggested a strain-level difference in the gut microbial composition. Additionally, a total of 25 Kyoto Encyclopedia of Genes and Genomes functional terms and 88 carbohydrate-active enzymes were distinctly enriched between Chinese yellow quails and Japanese quails. Most of the different species and MAGs were significantly interrelated with the shifts in the functional capacities of the quail gut microbiome. Taken together, we constructed a quail gut microbial gene catalog and enlarged the reference of quail gut microbial genomes. The results of this study provide a powerful and invaluable resource for quail gut microbiome-related research.
Collapse
Affiliation(s)
- Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China.
| | - Yousheng Rao
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jinge Ma
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Zhangfeng Wang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Qin He
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jishang Gong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Wentao Sheng
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Xuenong Zhu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yuwen Tan
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yanbei Yang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| |
Collapse
|
4
|
Controlled Intestinal Microbiota Colonisation in Broilers under the Industrial Production System. Animals (Basel) 2022; 12:ani12233296. [PMID: 36496817 PMCID: PMC9740664 DOI: 10.3390/ani12233296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The concept of designer microbiota in chicken is focused on early exposure of the hatchlings to pathogen-free microbiota inoculum, limiting the early access to harmful and pathogenic microorganisms, thus promoting colonisation of the gut with beneficial and natural poultry microbiota. In this study, we controlled colonisation of the intestine in broiler chickens in a large-scale industrial setting via at-hatch administration of a commercial product containing a highly diverse microbiota originating from the chicken caecum. The treatment significantly transformed the microbiota membership in the crop, proventriculus, jejunum and caecum and significantly altered the taxa abundance in the jejunum, jejunum mucosa, and caecum estimated using PERMANOVA and unweighted and weighted UniFrac distances, respectively. The treatment also improved the growth rate in chickens with no significant alteration in feed conversion ratio. A comparison of inoculum product microbiota structure revealed that the inoculum had the highest Shannon diversity index compared to all investigated gut sections, and the number of Observed Species second only to the caecal community. PCoA plots using weighted or unweighted UniFrac placed the inoculum samples together with the samples from the caecal origin.
Collapse
|
5
|
Feed Safety and the Development of Poultry Intestinal Microbiota. Animals (Basel) 2022; 12:ani12202890. [PMID: 36290275 PMCID: PMC9598862 DOI: 10.3390/ani12202890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Intensive gut colonisation of animals starts immediately after birth or hatch. Oral route of colonisation, and consequently the first feed, plays a significant role in the continual defining of the intestinal microbial community. The feed can influence colonisation in two ways: providing the microbial inoculum and providing the nutritional requirements that suit a specific type of microbes. In combination with environmental factors, feed shapes animal’s future health and performance from the first day of life. The objective of this review was to investigate feed safety aspects of animal nutrition from the gut colonisation aspect. Abstract The first feed offered to young chicks is likely the most important meal in their life. The complex gut colonisation process is determined with early exposure and during the first days of life before the microbial community is formed. Therefore, providing access to high-quality feed and an environment enriched in the beneficial and deprived of pathogenic microorganisms during this period is critical. Feed often carries a complex microbial community that can contain major poultry pathogens and a range of chemical contaminants such as heavy metals, mycotoxins, pesticides and herbicides, which, although present in minute amounts, can have a profound effect on the development of the microbial community and have a permanent effect on bird’s overall health and performance. The magnitude of their interference with gut colonisation in livestock is yet to be determined. Here, we present the animal feed quality issues that can significantly influence the microbial community development, thus severely affecting the bird’s health and performance.
Collapse
|
6
|
Ma JE, Xiong XW, Xu JG, Gong JS, Li J, Xu Q, Li YF, Yang YB, Zhou M, Zhu XN, Tan YW, Sheng WT, Wang ZF, Tu XT, Zeng CY, Zhang XQ, Rao YS. Metagenomic Analysis Identifies Sex-Related Cecal Microbial Gene Functions and Bacterial Taxa in the Quail. Front Vet Sci 2021; 8:693755. [PMID: 34660751 PMCID: PMC8517240 DOI: 10.3389/fvets.2021.693755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Japanese quail (Coturnix japonica) are important and widely distributed poultry in China. Researchers continue to pursue genetic selection for heavier quail. The intestinal microbiota plays a substantial role in growth promotion; however, the mechanisms involved in growth promotion remain unclear. Results: We generated 107.3 Gb of cecal microbiome data from ten Japanese quail, providing a series of quail gut microbial gene catalogs (1.25 million genes). We identified a total of 606 main microbial species from 1,033,311 annotated genes distributed among the ten quail. Seventeen microbial species from the genera Anaerobiospirillum, Alistipes, Barnesiella, and Butyricimonas differed significantly in their abundances between the female and male gut microbiotas. Most of the functional gut microbial genes were involved in metabolism, primarily in carbohydrate transport and metabolism, as well as some active carbohydrate-degrading enzymes. We also identified 308 antibiotic-resistance genes (ARGs) from the phyla Bacteroidetes, Firmicutes and Euryarchaeota. Studies of the differential gene functions between sexes indicated that abundances of the gut microbes that produce carbohydrate-active enzymes varied between female and male quail. Bacteroidetes was the predominant ARG-containing phylum in female quail; Euryarchaeota was the predominant ARG-containing phylum in male quail. Conclusion: This article provides the first description of the gene catalog of the cecal bacteria in Japanese quail as well as insights into the bacterial taxa and predictive metagenomic functions between male and female quail to provide a better understanding of the microbial genes in the quail ceca.
Collapse
Affiliation(s)
- Jing-E Ma
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Xin-Wei Xiong
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Ji-Guo Xu
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Ji-Shang Gong
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Jin Li
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China
| | - Qiao Xu
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Yuan-Fei Li
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Yang-Bei Yang
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Min Zhou
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Xue-Nong Zhu
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Yu-Wen Tan
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Wen-Tao Sheng
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Zhang-Feng Wang
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Xu-Tang Tu
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Cheng-Yao Zeng
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| | - Xi-Quan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - You-Sheng Rao
- Institution of Biological Technology, Nanchang Normal University, Nanchang, China.,Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, China
| |
Collapse
|
7
|
Vollmar S, Wellmann R, Borda-Molina D, Rodehutscord M, Camarinha-Silva A, Bennewitz J. The Gut Microbial Architecture of Efficiency Traits in the Domestic Poultry Model Species Japanese Quail ( Coturnix japonica) Assessed by Mixed Linear Models. G3 (BETHESDA, MD.) 2020; 10:2553-2562. [PMID: 32471941 PMCID: PMC7341145 DOI: 10.1534/g3.120.401424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
It is well known that mammals and avian gut microbiota compositions are shaped by the host genomes and affect quantitative traits. The microbial architecture describes the impact of the microbiota composition on quantitative trait variation and the number and effect distribution of microbiota features. In the present study the gut microbial architecture of feed-related traits phosphorus and calcium utilization, daily gain, feed intake and feed per gain ratio in the domestic poultry model species Japanese quail were assessed by mixed linear models. The ileum microbiota composition was characterized by 16S rRNA amplicon sequencing techniques of growing individuals. The microbiability of the traits was on a similar level as the narrow sense heritability and was highly significant except for calcium utilization. The animal microbial correlation of the traits was substantial. Microbiome-wide association analyses revealed several traits associated and highly significant microbiota features, both on the bacteria genera as well as on the operational taxonomic unit level. Most features were significant for more than one trait, which explained the high microbial correlations. It can be concluded that the traits are polymicrobial determined with some microbiota features with larger effects and many with small effects. The results are important for the development of hologenomic selection schemes for feed-related traits in avian breeding programs that are targeting the host genome and the metagenome simultaneously.
Collapse
Affiliation(s)
- Solveig Vollmar
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | | | | | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Maki JJ, Bobeck EA, Sylte MJ, Looft T. Eggshell and environmental bacteria contribute to the intestinal microbiota of growing chickens. J Anim Sci Biotechnol 2020; 11:60. [PMID: 32537141 PMCID: PMC7288515 DOI: 10.1186/s40104-020-00459-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Background The initial intestinal microbiota acquired from different sources has profound impacts on animal health and productivity. In modern poultry production practices, the source(s) of the establishing microbes and their overall contribution during development of gastrointestinal tract communities are still unclear. Using fertilized eggs from two independent sources, we assessed the impact of eggshell- and environmental-associated microbial communities on the successional processes and bacterial community structure throughout the intestinal tract of chickens for up to 6 weeks post-hatch. Results Culturing and sequencing techniques identified a viable, highly diverse population of anaerobic bacteria on the eggshell. The jejunal, ileal, and cecal microbial communities for the egg-only, environment-only, and conventionally raised birds generally displayed similar successional patterns characterized by increasing community richness and evenness over time, with strains of Enterococcus, Romboutsia, and unclassified Lachnospiraceae abundant for all three input groups in both trials. Bacterial community structures differed significantly based on trial and microbiota input with the exception of the egg-exposed and conventional birds in the jejunum at week 1 and the ileum at week 6. Cecal community structures were different based on trial and microbiota input source, and cecal short-chain fatty acid profiles at week 6 highlighted functional differences as well. Conclusion We identified distinct intestinal microbial communities and differing cecal short-chain fatty acid profiles between birds exposed to the microbiota associated with either the eggshell or environment, and those of conventionally hatched birds. Our data suggest the eggshell plays an appreciable role in the development of the chicken intestinal microbiota, especially in the jejunum and ileum where the community structure of the eggshell-only birds was similar to the structure of conventionally hatched birds. Our data identify a complex interplay between the eggshell and environmental microbiota during establishment and succession within the chicken gut. Further studies should explore the ability of eggshell- and environment-derived microbes to shape the dynamics of succession and how these communities can be targeted through interventions to promote gut health and mitigate food-borne pathogen colonization in poultry.
Collapse
Affiliation(s)
- Joel J Maki
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010 USA.,Interdepartmental Microbiology Graduate Program, Iowa State University
- , Ames, IA 50011 USA.,Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN 37830 USA
| | | | - Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010 USA
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, 1920 Dayton Ave, Ames, IA 50010 USA
| |
Collapse
|
9
|
Borda-Molina D, Roth C, Hérnandez-Arriaga A, Rissi D, Vollmar S, Rodehutscord M, Bennewitz J, Camarinha-Silva A. Effects on the Ileal Microbiota of Phosphorus and Calcium Utilization, Bird Performance, and Gender in Japanese Quail. Animals (Basel) 2020; 10:ani10050885. [PMID: 32438715 PMCID: PMC7278395 DOI: 10.3390/ani10050885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, we aimed to investigate the ileum digesta of a large cohort of Japanese quail fed the same diet, with similar environmental conditions. We also address how P utilization (PU), Ca utilization (CaU), and bird performance (feed intake (FI), feed conversion (FC), and body weight gain (BWG)) modify intestinal microbiota of male and female quail. Despite the great number of samples analyzed (760), a core microbiome was composed of five bacteria. The Unc. Lactobacillus, Unc. Clostridaceae 1, Clostridium sensu stricto, Escherichia coli, and Streptococcus alactolyticus were detected in all samples and contributed to more than 70% of the total community. Depending on the bird predisposition for PU, CaU, FI, BWG, and FC, those species were present in higher or lower abundances. There was a significant gender effect on the ileal microbial community. While females had higher abundances of Lactobacillus, males were more colonized by Streptococcus alactolyticus. The entire cohort was highly colonized by Escherichia coli (8%-15%), an enteropathogenic bacteria. It remains unclear, if microbiota composition followed the mechanisms that caused different PU, CaU, FI, FC, and BWG or if the change in microbiota composition and function caused the differences in PU, CaU, and performance traits.
Collapse
|