1
|
Gupta S, Pandey S, Nandi SP, Singh M. Modulation of ethylene and ROS-scavenging enzymes by multifarious plant growth-promoting endophytes in tomato (Solanum lycopersicum) plants to combat Xanthomonas -induced stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107982. [PMID: 37651951 DOI: 10.1016/j.plaphy.2023.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
The purpose of the current study was to explore root endophytes- Priestia megaterium T3 and Bacillus cereus T4 from Moringa olefiera for the suppression of leaf spot disease in tomato plants challenged with Xanthomonas vesicatoria. Both strains had plant growth-stimulating characteristics including auxin production, solubilization of inorganic phosphate and zinc complexes, and production of ammonia, siderophore, as well as hydrolytic enzymes. An agar well diffusion and fluorescence viability assay have validated the antibacterial effect of the cell-free culture supernatant of strains T3 and T4. Liquid chromatography-mass spectrometry (LC-MS) profiling has identified the secondary metabolites in the cell-free supernatant of strains T3 and T4. The bio-priming of tomato seeds with a consortium of T3 and T4 strains has significantly declined ethylene (by 0.61-fold) and hydrogen peroxide (H2O2, 0.64-fold) concentration thus, maintaining a lower content of ROS-induced malondialdehyde (MDA, 0.91-fold) as compared to control counterparts. Consequently, the leaf spot disease severity was reduced by ∼70% in consortium-treated tomato plants in contrast to their pathogen-challenged control. The consortia (T3+T4) treatment has facilitated induced systemic resistance by enhancing enzymatic activities of phenylalanine ammonia-lyase (PAL), peroxidase (PO), polyphenol oxidase (PPO), catalase (CAT), and ascorbate oxidase (AO) to detoxify the excessive Xanthomonas-induced ROS accumulation in tomato plants. Conclusively, bacterial endophytes modulate X. vesicatoria-induced ROS response and ethylene levels in tomato plants. The current findings indicate that plant growth-promoting endophytic bacterial strains hold the potential to sustainably enhance plant growth and suppress bacterial leaf spot disease in tomato plants.
Collapse
Affiliation(s)
- Shikha Gupta
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Sangeeta Pandey
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India.
| | - Shoma Paul Nandi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Monika Singh
- G.L. Bajaj Institute of Technology and Management, Greater Noida, G.B Nagar, Uttar Pradesh, 201306, India
| |
Collapse
|
2
|
Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, Kumar A, Vanishree G, Kumar D, Bhardwaj V, Meena JK, Mangal V, Shelake RM, Kim JY, Pramanik D. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life (Basel) 2021; 11:life11060545. [PMID: 34200706 PMCID: PMC8228783 DOI: 10.3390/life11060545] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.
Collapse
Affiliation(s)
- Kumar Nishant Chourasia
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
- Correspondence: (K.N.C.); (D.P.)
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Devanshu Dev
- School of Agricultural Sciences, G D Goenka University, Gurugram 122103, Haryana, India;
| | - Hemant Balasaheb Kardile
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Virupaksh U. Patil
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Amarjeet Kumar
- Department of Genetics and Plant Breeding, MTTC&VTC, Central Agriculture University, Imphal 795004, Manipur, India;
| | - Girimalla Vanishree
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Jitendra Kumar Meena
- ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata 700120, West Bengal, India;
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (R.M.S.); (J.-Y.K.)
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (R.M.S.); (J.-Y.K.)
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (R.M.S.); (J.-Y.K.)
- Correspondence: (K.N.C.); (D.P.)
| |
Collapse
|