1
|
El-Demerdash FM, Al Mhanna AB, El-Sayed RA, Mohamed TM, Salem MM. Use of Nigella sativa silver nanocomposite as an alternative therapy against thioacetamide nephrotoxicity. GENES & NUTRITION 2025; 20:6. [PMID: 40087564 PMCID: PMC11909921 DOI: 10.1186/s12263-025-00766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Nigella sativa (N. sativa) L. (Ranunculaceae), commonly referred to as black cumin, has a long history of usage as an herbal remedy. It has been utilized conventionally and in clinical settings to treat various illnesses. Six groups of male Wister rats were randomly selected as Gp I, represented as control; Gp II administered N. sativa aqueous extract (NSAE); 200 mg/kg/d, Gp III received N. sativa silver nanocomposite (NS-Ag-NC); 0.25 mg/kg/d; Gp IV administered thioacetamide (TAA);100 mg/kg; thrice weekly and Gps V and VI administered NSAE and NS-Ag-NC with TAA for six weeks, respectively. Findings showed that GC-MS analysis of NSAE has a high concentration of phytochemicals with strong antioxidant activity. Results revealed that TAA administration elevated TBARS, H2O2, PCC, NO levels, kidney function parameters, LDH activity, and up-regulated TNF-α, IL-1β, NF-kβ, and COX-2 gene expressions. In contrast, enzymatic and non-enzymatic antioxidants and ALP activity were extensively diminished. Also, severe abnormalities in lipid profile, hematological parameters, and histopathological features were noted. On the other hand, the administration of NSAE or NS-Ag-NC followed by TAA intoxication reduces renal impairment, restores the antioxidant system, and downregulates the expression of TNF-α, IL-1β, NF-kβ, and COX-2 genes in rats' renal tissues. Collectively, NS-Ag-NC has more prevalent nephroprotective impacts than NSAE and can adjust the oxidant/antioxidant pathways besides their anti-inflammatory efficacy against TAA toxicity.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Ansam B Al Mhanna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Department of Chemistry, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Department of Chemistry, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Lotfy M, Khattab A, Shata M, Alhasbani A, Khalaf A, Alsaeedi S, Thaker M, Said H, Tumi H, Alzahmi H, Alblooshi O, Hamdan M, Hussein A, Kundu B, Adeghate EA. Melatonin increases AKT and SOD gene and protein expressions in diabetic rats. Heliyon 2024; 10:e28639. [PMID: 38586324 PMCID: PMC10998142 DOI: 10.1016/j.heliyon.2024.e28639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease marked by hyperglycemia due to insulin deficiency or insulin resistance leading to many chronic complications. It is thus important to manage diabetes effectively in order to prevent and or delay these complications. Melatonin is produced by the pineal gland and regulates the wake-sleep circadian rhythm. Existing evidence suggests that melatonin may be effective in the management of DM. However, the evidence on the mechanism of the beneficial effect melatonin as a treatment for DM is limited. In this study, we investigated the effect of melatonin treatment on blood glucose, insulin (INS), AKT and superoxide dismutase (SOD) gene levels in diabetic rats. Non-diabetic and diabetic rats were treated orally for 4 weeks with either 25 mg or 50 mg/kg body weight of melatonin. At the end of the study, pancreatic and liver tissues morphology, glucose homeostasis, serum insulin and SOD levels, hepatic gene and protein expression of SOD as protecting antioxidant enzyme and AKT as central element involved in PI3K/AKT insulin signaling pathway were estimated. Melatonin treated diabetic rats showed reduced hyperglycemia, and increased serum insulin and SOD levels. In addition, melatonin induced an increased gene and protein expression of SOD and AKT. In conclusion, melatonin may play a role in treating diabetic rats via stimulation of insulin secretion, insulin signaling and reduction in oxidative stress.
Collapse
Affiliation(s)
- Mohamed Lotfy
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aalaa Khattab
- Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, Egypt
| | - Mohammed Shata
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Alhasbani
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdallah Khalaf
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Alsaeedi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mahdi Thaker
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hazza Said
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Harun Tumi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hassan Alzahmi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Omar Alblooshi
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamad Hamdan
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amjad Hussein
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Biduth Kundu
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ernest A. Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Böhm A, Lauko V, Dostalova K, Balanova I, Varga I, Bezak B, Jajcay N, Moravcik R, Lazurova L, Slezak P, Mojto V, Kollarova M, Petrikova K, Danova K, Zeman M. In-vitro antiplatelet effect of melatonin in healthy individuals and patients with type 2 diabetes mellitus. J Endocrinol Invest 2023; 46:2493-2500. [PMID: 37148530 PMCID: PMC10632203 DOI: 10.1007/s40618-023-02102-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
PURPOSE The incidence of acute myocardial infarctions (AMI) shows circadian variation typically peaking during morning hours with a decline at night. However, this variation does not occur in patients with diabetes mellitus (DM). The night's decline of AMI may be partially explained by melatonin-related platelet inhibition. Whether this effect is absent in diabetic patients is unknown. The aim was to study the effect of melatonin on in-vitro platelet aggregation in healthy individuals and patients with type 2 DM. METHODS Platelet aggregation was measured in blood samples from healthy individuals (n = 15) and type 2 DM patients (n = 15) using multiple electrode aggregometry. Adenosine diphosphate (ADP), arachidonic acid (ASPI) and thrombin (TRAP) were used as agonists. Aggregability for each subject was tested after adding melatonin in two concentrations. RESULTS In healthy individuals, melatonin inhibited platelet aggregation in both higher (10-5 M) and lower concentrations (10-9 M) induced by ADP, ASPI, and TRAP (p < 0.001, p = 0.002, p = 0.029, respectively). In DM patients, melatonin did not affect platelet aggregation in both concentrations induced by ADP, ASPI, and TRAP. Melatonin decreased platelet aggregation induced by ADP, ASPI, and TRAP significantly more in healthy individuals compared to patients with DM. (p = 0.005, p = 0.045 and p = 0.048, respectively). CONCLUSION Platelet aggregation was inhibited by melatonin in healthy individuals. In-vitro antiplatelet effect of melatonin in type 2 DM patients is significantly attenuated.
Collapse
Affiliation(s)
- A Böhm
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia.
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, University Hospital Bratislava, Bratislava, Slovakia.
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia.
| | - V Lauko
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - K Dostalova
- Slovak Medical University, Bratislava, Slovakia
| | - I Balanova
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - I Varga
- Cardio-Integra s.r.o., Bratislava, Slovakia
| | - B Bezak
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - N Jajcay
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague 8, Czech Republic
| | - R Moravcik
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - L Lazurova
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - P Slezak
- Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - V Mojto
- Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - M Kollarova
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia
- Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - K Petrikova
- Premedix Academy, Medená 18, 81102, Bratislava, Slovakia
| | - K Danova
- National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - M Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Baali B, Kirane-Amrani L, Tichati L, Soual R, Ouali K. Lipid peroxidation and changes in major antioxidant markers in copper quinolate fungicide-exposed rats. Toxicol Ind Health 2023; 39:664-678. [PMID: 37753813 DOI: 10.1177/07482337231203075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The present study investigated the toxic effects of sub-chronic exposure to copper quinolate (CuQ) fungicide on liver and kidney function. Twenty-four adult male Wistar rats were equally divided into a control group, and three treated groups received, respectively, by oral gavage, three increasing doses of CuQ: 47; 67.1; and 94 mg/kg b.w corresponding, respectively, LD50/100, LD50/70, and LD50/50 daily for 8 weeks. CuQ resulted in a significant increase in the serum enzymatic activity of aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and the serum levels of urea, creatinine, uric acid, and malondialdehyde, along with a marked decrease in alanine aminotransferase (ALT) activity, and the contents of total protein and albumin compared to those of the control group. Furthermore, glutathione content and the enzymatic activity of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx) decreased significantly in a dose-dependent manner with respect to CuQ. The adverse effects of CuO were supported by the histopathological evaluations of liver and kidney tissues. Conclusively, sub-chronic CuQ exposure was shown to induce kidney and liver oxidative damage and dysfunction.
Collapse
Affiliation(s)
- B Baali
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, University Badji Mokhtar Annaba, Annaba, Algeria
| | - L Kirane-Amrani
- Laboratory of Applied Biochemistry and Microbiology, Faculty of Sciences, University Badji Mokhtar Annaba, Sidi Amar, Algeria
| | - L Tichati
- Environmental Research Center (ERC), Sidi Amar, Algeria
| | - R Soual
- Applied Neuroendocrinology Laboratory (LNA), Department of Biology, Faculty of Sciences, University Badji Mokhtar Annaba, Sidi Amar, Algeria
| | - K Ouali
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, University Badji Mokhtar Annaba, Annaba, Algeria
| |
Collapse
|
5
|
Alsharif KF, Hamad AA, Alblihd MA, Ali FAZ, Mohammed SA, Theyab A, Al-Amer OM, Almuqati MS, Almalki AA, Albarakati AJA, Alzahrani KJ, Albrakati A, Albarakati MH, Abass D, Lokman MS, Elmahallawy EK. Melatonin downregulates the increased hepatic alpha-fetoprotein expression and restores pancreatic beta cells in a streptozotocin-induced diabetic rat model: a clinical, biochemical, immunohistochemical, and descriptive histopathological study. Front Vet Sci 2023; 10:1214533. [PMID: 37655263 PMCID: PMC10467430 DOI: 10.3389/fvets.2023.1214533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
Background Diabetes mellitus (DM) is a chronic metabolic disorder. Hepatopathy is one of the serious effects of DM Melatonin (MT) is a potent endogenous antioxidant that can control insulin output. However, little information is available about the potential association between melatonin and hepatic alpha-fetoprotein expression in diabetes. Objective This study was conducted to assess the influence of MT on diabetes-related hepatic injuries and to determine how β-cells of the pancreas in diabetic rats respond to MT administration. Materials and methods Forty rats were assigned to four groups at random (ten animals per group). Group I served as a normal control group. Group II was induced with DM, and a single dose of freshly prepared streptozotocin (45 mg/kg body weight) was intraperitoneally injected. In Group III, rats received 10 mg/kg/day of intraperitoneal melatonin (IP MT) intraperitoneally over a period of 4 weeks. In Group IV (DM + MT), following the induction of diabetes, rats received MT (the same as in Group III). Fasting blood sugar, glycosylated hemoglobin (HbA1c), and serum insulin levels were assessed at the end of the experimental period. Serum liver function tests were performed. The pancreas and liver were examined histopathologically and immunohistochemically for insulin and alpha-fetoprotein (AFP) antibodies, respectively. Results MT was found to significantly modulate the raised blood glucose, HbA1c, and insulin levels induced by diabetes, as well as the decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Furthermore, MT attenuated diabetic degenerative changes in the pancreas and the hepatic histological structure, increased the β-cell percentage area, and decreased AFP expression in the liver tissue. It attenuated diabetes-induced hepatic injury by restoring pancreatic β-cells; its antioxidant effect also reduced hepatocyte injury. Conclusion Collectively, the present study confirmed the potential benefits of MT in downregulating the increased hepatic alpha-fetoprotein expression and in restoring pancreatic β-cells in a streptozotocin-induced diabetic rat model, suggesting its promising role in the treatment of diabetes.
Collapse
Affiliation(s)
- Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
| | - Asmaa A. Hamad
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohamed A. Alblihd
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
- Department of Medical Microbiology and Immunology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | | | - Abdulrahman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Osama M. Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Malik Saad Almuqati
- Department of Laboratory, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Jameel A. Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | | | - Doaa Abass
- Zoology Department, Faculty of Sciences, Sohag University, Sohag, Egypt
| | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
6
|
Farid A, Moussa P, Youssef M, Haytham M, Shamy A, Safwat G. Melatonin relieves diabetic complications and regenerates pancreatic beta cells by the reduction in NF-kB expression in streptozotocin induced diabetic rats. Saudi J Biol Sci 2022; 29:103313. [PMID: 35707823 PMCID: PMC9189213 DOI: 10.1016/j.sjbs.2022.103313] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
Melatonin, a pleiotropic hormone, has many regulatory effects on the circadian and seasonal rhythms, sleep and body immune system. It is used in the treatment of blind circadian rhythm sleep disorders, delayed sleep phase and insomnia. It is a potent antioxidant, anti-inflammatory, free radical scavenger, helpful in fighting infectious disease and cancer treatment. Decreased level of circulating melatonin was associated with an increased blood glucose level, losing the anti-oxidant protection and anti-inflammatory responses. We aimed to evaluate the effect of melatonin administration, in streptozotocin (STZ) induced diabetic rats, on blood glucose level and pancreatic beta (β) cells. Diabetes mellitus was induced in Sprague dawley male rats by the intravenous (i.v) injection of 65 mg/kg of STZ. Diabetic rats received melatonin at a dose of 10 mg/kg daily for 8 weeks by oral routes. The results showed, after 8 weeks of melatonin administration, a reduction in: 1- fasting blood glucose (FBG) and fructosamine (FTA) levels, 2- kidney and liver function parameters, 3- levels of serum triglycerides, cholesterol and LDL-C, 4- malondialdehyde (MDA), 5- NF-κB expression in treated group, 6- pro-inflammatory cytokines (IL-1β and IL-12) and immunoglobulins (IgA, IgE and IgG). Furthermore, an elevation in insulin secretion was noticed in melatonin treated group that indicated β cells regeneration. Therefore, melatonin administration, in STZ induced diabetic rats; reduced hyperglycemia, hyperlipidemia and oxidative stress. Melatonin acted as an anti-inflammatory agent that reduced pro-inflammatory cytokines (IL-1β and IL-12) and oxidative stress biomarkers (MDA). Melatonin succeeded in protecting β cells under severe inflammatory situations, which was apparent by the regeneration of islets of Langerhans in treated diabetic rats. Moreover, these results can open a gate for diabetes management and treatment.
Collapse
Affiliation(s)
- Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, Egypt
| | - Passant Moussa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Manar Youssef
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Merna Haytham
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ali Shamy
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
7
|
Tichati L, Trea F, Ouali K. The antioxidant study proprieties of Thymus munbyanus aqueous extract and its beneficial effect on 2, 4-Dichlorophenoxyacetic acid -induced hepatic oxidative stress in albino Wistar rats. Toxicol Mech Methods 2021; 31:212-223. [PMID: 33371761 DOI: 10.1080/15376516.2020.1870183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Herein, we investigated the antioxidant and hepatoprotective effects of thyme (Thymus munbyanus: AETM) on 2,4-dichlorophenoxyacetic acid (2,4 -D) - induced liver oxidative damage in rats. The phytochemical study of AETM revealed potent antioxidant properties owed to its richness in phenolic compounds including flavonoids, tannins, and phenolic acids. Further, in vivo animal study was conducted on 24 Wistar rats divided equally into control group and three treated groups, receiving orally AETM (10 ml/kg body weight (b.w), 2,4-D (5 mg/kg (b.w) and AETM + 2,4 - D (combined treatment) for 30 consecutive days. The results showed a significant increase in the enzymatic activity of transaminases (AST, ALT), alkaline phosphatase (ALP), gamma-glutamyltransferase (γ-GT), lactate dehydrogenase (LDH), and the levels of malondialdehyde (MDA) and carbonyl proteins (CPO), along with a significant decrease in plasma total protein, albumin, hepatic glutathione (GSH) contents, and the enzymatic activity of the hepatic antioxidant markers (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione- S- transferase (GST)) in 2,4- D treatment compared with control. Moreover, no significant changes in these parameters were noticed in AETM treated animals as compared to control, and hence the combined treatment (AETM + 2,4- D) showed a marked enhancement in the above altered hepatic functional and antioxidant parameters and liver histopathology. In conclusion, AETM, owing to its richness with phenolic compounds proved to be an efficient antioxidant against 2,4-D - induced liver oxidative damage, and hence complementary studies would be needed to appear the use of these compounds as supplements in treating liver impairment.
Collapse
Affiliation(s)
- Lazhari Tichati
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Fouzia Trea
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|