1
|
Nuñez E, Muguruza-Montero A, Alicante SM, Villarroel A. Fluorometric Measurement of Calmodulin-Dependent Peptide-Protein Interactions Using Dansylated Calmodulin. Bio Protoc 2024; 14:e4963. [PMID: 38618173 PMCID: PMC11006803 DOI: 10.21769/bioprotoc.4963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/16/2024] Open
Abstract
The assessment of peptide-protein interactions is a pivotal aspect of studying the functionality and mechanisms of various bioactive peptides. In this context, it is essential to employ methods that meet specific criteria, including sensitivity, biocompatibility, versatility, simplicity, and the ability to offer real-time monitoring. In cellular contexts, only a few proteins naturally possess inherent fluorescence, specifically those containing aromatic amino acids, particularly tryptophan. Nonetheless, by covalently attaching fluorescent markers, almost all proteins can be modified for monitoring purposes. Among the early extrinsic fluorescent probes designed for this task, dansyl chloride (DNSC) is a notable option due to its versatile nature and reliable performance. DNSC has been the primary choice as a fluorogenic derivatizing reagent for analyzing amino acids in proteins and peptides for an extended period of time. In our work, we have effectively utilized the distinctive properties of dansylated-calmodulin (D-CaM) for monitoring the interaction dynamics between proteins and peptides, particularly in the context of their association with calmodulin (CaM), a calcium-dependent regulatory protein. This technique not only enables us to scrutinize the affinity of diverse ligands but also sheds light on the intricate role played by calcium in these interactions. Key features • Dynamic fluorescence and real-time monitoring: dansyl-modified CaM enables sensitive, real-time fluorescence, providing valuable insights into the dynamics of molecular interactions and ligand binding. • Selective interaction and stable fluorescent adducts: DNSC selectively interacts with primary amino groups, ensuring specific detection and forming stable fluorescent sulfonamide adducts. • Versatility in research and ease of identification: D-CaM is a versatile tool in biological research, facilitating identification, precise quantification, and drug assessment for therapeutic development. • Sensitivity to surrounding alterations: D-CaM exhibits sensitivity to its surroundings, particularly ligand-induced changes, offering subtle insights into molecular interactions and environmental influences.
Collapse
Affiliation(s)
- Eider Nuñez
- Instituto Biofisika, CSIC-UPV/EHU, Leioa, Spain
| | | | | | | |
Collapse
|
2
|
Puvvula PK, Moon AM. Discovery and characterization of anti-cancer peptides from a random peptide library. PLoS One 2024; 19:e0293072. [PMID: 38349913 PMCID: PMC10863893 DOI: 10.1371/journal.pone.0293072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 02/15/2024] Open
Abstract
We performed a forward genetic screen to discover peptides that specifically target breast cancer cells using a Penetratin tagged, random 15mer peptide library. We identified a group of novel peptides that specifically inhibited the proliferation and survival of breast cancer cells without affecting normal primary mammary epithelial cells or fibroblasts. The intrinsic apoptotic pathway is activated by these peptides in the face of abnormal expression of numerous cell cycle regulatory genes. Associated alterations in histone marks, nuclear structure, and levels of critical RNA binding proteins vary in a peptide specific manner. This study demonstrates a novel method for the discovery of new potential therapeutic peptides.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States of America
| | - Anne M. Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States of America
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
3
|
Zhu G, Cai H, Xiao Q, Zeng S, Jiang X, Liu D. GRB7 plays a promoting role in the progression of gastric cancer. BMC Cancer 2023; 23:1262. [PMID: 38129809 PMCID: PMC10734061 DOI: 10.1186/s12885-023-11694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Gastric cancer is a clinically common tumor, showing an upward trend of both incidence and mortality. GRB7 has been identified as a vital regulator in tumor progression. This study aims to uncover the biological function of GRB7 in gastric cancer process. METHODS immunohistochemical (IHC) staining using a tissue microarray (TMA), quantitative reverse transcription PCR (qRT-PCR) and Western blotting were performed to detect the expression of genes. Furthermore, gastric cancer cell lines AGS and MGC-803 were transfected with short hairpin RNAs against GRB7. The biological function of GRB7 in gastric cancer cells were examined by CCK-8, flow cytometry, wound healing and Transwell assays. Then, in vivo tumor formation assay was conducted to explore the effects of GRB7 on tumor growth. Finally, expression levels of proteins related to cell functions were determined by Western blotting. Coimmunoprecipitation (CoIP) assay was performed to assess the protein-protein interaction. RESULTS GRB7 was up-regulated in gastric cancer tissues and cell lines, and its expression was inversely proportional to survival of gastric cancer patients. Moreover, GRB7 knockdown inhibited proliferative, migratory abilities, as well as promoted cell apoptosis in gastric cancer cells. Further study suggested that GRB7 silencing could suppress gastric cancer tumor growth in vivo. Furthermore, our study uncovered an important interaction between GRB7 and MyD88. Silencing MyD88 was observed to alleviate the malignant phenotypes promoted by GRB7 in gastric cancer cells. CONCLUSIONS Together, this study provided evidence that GRB7 may be an effective molecular targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Guomin Zhu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hu Cai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qiang Xiao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shukun Zeng
- Department of General Surgery, The Affiliated Hospital of JiangXi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaohua Jiang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Donglan Liu
- Department of Gastroenterology, Cancer Hospital of Jiangxi Province, Jiangxi, 330029, China.
| |
Collapse
|
4
|
Bautista Saiz C, Mora Gómez MM, Polo JF, Gutiérrez Castañeda LD. La proteína 7 unida al receptor del factor de crecimiento (GRB7) en cáncer de mama. REPERTORIO DE MEDICINA Y CIRUGÍA 2022. [DOI: 10.31260/repertmedcir.01217372.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
El cáncer de mama debe considerarse como un problema de salud pública ya que es la causa principal de muerte en mujeres en el mundo. Se conoce que es multifactorial y heterogéneo de manera que cada tumor tiene características genéticas y moleculares propias, lo cual se refleja en el comportamiento clínico, respuesta al tratamiento y pronóstico. La proteína 7 unida al receptor del factor de crecimiento (GRB7) hace parte de un grupo de proteínas GRB que median la interacción entre receptores tirosina cinasa y proteínas efectoras en algunas vías de señalización involucradas en transducción de señales, migración celular y angiogénesis. Esta proteína es codificada por el gen GRB7 localizado en el cromosoma 17 en el locus 17q11–21, cerca del gen ERBB2, lo que sugiere coamplificación y coexpresión de estos dos genes en el desarrollo del cáncer. Se ha visto que la proteína GRB7 por sí sola está presente en la biología molecular implícita del cáncer de mama, interviniendo en la proliferación y migración celular facilitando así la invasión y posibles metástasis. Se considera como un factor de mal pronóstico en esta enfermedad.
Collapse
|
5
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
6
|
Puvvula PK, Buczkowski S, Moon AM. hnRNPK-derived cell-penetrating peptide inhibits cancer cell survival. Mol Ther Oncolytics 2021; 23:342-354. [PMID: 34820504 PMCID: PMC8586514 DOI: 10.1016/j.omto.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
hnRNPK is a multifunctional protein that plays an important role in cancer cell proliferation and metastasis via its RNA- and DNA-binding properties. Previously we showed that cell-penetrating peptides derived from the RGG RNA-binding domain of SAFA (hnRNPU) disrupt cancer cell proliferation and survival. Here we explore the efficacy of a peptide derived from the RGG domain of hnRNPK. This peptide acts in a dominant-negative manner on several hnRNPK functions to induce death of multiple types of cancer cells. The peptide phenocopies the effect of hnRNPK knockdown on its mRNA-stability targets such as KLF4 and EGR1 and alters the levels and locations of long non-coding RNAs (lncRNAs) and proteins required for nuclear and paraspeckle formation and function. The RGG-derived peptide also decreases euchromatin as evidenced by loss of active marks and polymerase II occupancy. Our findings reveal the potential therapeutic utility of the hnRNPK RGG-derived peptide in a range of cancers.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Corresponding author: Pavan Kumar Puvvula, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| | - Stephanie Buczkowski
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Anne M. Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA
- Corresponding author: Anne M. Moon, MD, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| |
Collapse
|
7
|
Puvvula PK, Moon AM. Novel Cell-Penetrating Peptides Derived From Scaffold-Attachment- Factor A Inhibits Cancer Cell Proliferation and Survival. Front Oncol 2021; 11:621825. [PMID: 33859938 PMCID: PMC8042391 DOI: 10.3389/fonc.2021.621825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic cellular processes but the scope of its function in cancer cells is unknown. Here, we report dominant-negative activity of novel peptides derived from the SAP and RGG-domains of SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation of alternatively spliced targets and decreases levels of key spliceosome proteins in a cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone marks, promotes chromatin compaction, and activates the DNA damage response and cell death in a subset of cancer cell types. Our findings reveal an unprecedented function of SAFA-derived peptides in regulating diverse SAFA molecular functions as a tumor suppressive mechanism and demonstrate the potential therapeutic utility of SAFA-peptides in a wide range of cancer cells.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States.,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Abdelli F, Jellali K, Anguita E, González-Muñoz M, Villalobo E, Madroñal I, Alcalde J, Ben Ali M, Elloumi-Mseddi J, Jemel I, Tebar F, Enrich C, Aifa S, Villalobo A. The role of the calmodulin-binding and calmodulin-like domains of the epidermal growth factor receptor in tyrosine kinase activation. J Cell Physiol 2020; 236:4997-5011. [PMID: 33305427 DOI: 10.1002/jcp.30205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 11/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) harbors a calmodulin (CaM)-binding domain (CaM-BD) and a CaM-like domain (CaM-LD) upstream and downstream, respectively, of the tyrosine kinase (TK) domain. We demonstrate in this paper that deletion of the positively charged CaM-BD (EGFR/CaM-BD∆) inactivated the TK activity of the receptor. Moreover, deletion of the negatively charged CaM-LD (EGFR/CaM-LD∆), leaving a single negative residue (glutamate), reduced the activity of the receptor. In contrast, substituting the CaM-LD with a histidine/valine-rich peptide (EGFR/InvCaM-LD) caused full inactivation. We also demonstrated using confocal microscopy and flow cytometry that the chimera EGFR-green fluorescent protein (GFP)/CaM-BD∆, the EGFR/CaM-LD∆, and EGFR/InvCaM-LD mutants all bind tetramethylrhodamine-labelled EGF. These EGFR mutants were localized at the plasma membrane as the wild-type receptor does. However, only the EGFR/CaM-LD∆ and EGFR/InvCaM-LD mutants appear to undergo ligand-dependent internalization, while the EGFR-GFP/CaM-BD∆ mutant seems to be deficient in this regard. The obtained results and in silico modelling studies of the asymmetric structure of the EGFR kinase dimer support a role of a CaM-BD/CaM-LD electrostatic interaction in the allosteric activation of the EGFR TK.
Collapse
Affiliation(s)
- Faten Abdelli
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Karim Jellali
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Estefanía Anguita
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - María González-Muñoz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ivan Madroñal
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Alcalde
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Jihene Elloumi-Mseddi
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Ikram Jemel
- Centre of Biotechnology of Sfax, Sfax, Tunisia.,Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Francesc Tebar
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sami Aifa
- Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
| |
Collapse
|