1
|
Yan X, Zhang C, Gao LX, Liu MM, Yang YT, Yu LJ, Zhou YB, Milaneh S, Zhu YL, Li J, Wang WL. Novel imidazo[1,2,4] triazole derivatives: Synthesis, fluorescence, bioactivity for SHP1. Eur J Med Chem 2024; 265:116027. [PMID: 38128236 DOI: 10.1016/j.ejmech.2023.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. The development of efficient methods for rapidly tracing and modulating the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. Thus, we designed and synthesized a series of imidazo[1,2,4] triazole derivatives containing salicylic acid to explore novel scaffolds with inhibitory activities and good fluorescence properties for SHP1. The photophysical properties and inhibitory activities of these imidazo[1,2,4] triazole derivatives (5a-5y) against SHP1PTP were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound 5p exhibited remarkable fluorescence response (P: 0.002) with fluorescence quantum yield (QY) of 0.37 and inhibitory rate of 85.21 ± 5.17% against SHP1PTP at the concentration of 100 μM. Furthermore, compound 5p showed obvious aggregation caused quenching (ACQ) effect and had high selectivity for Fe3+ ions, good anti-interference and relatively low detection limit (5.55 μM). Finally, the cellular imaging test of compound 5p also exhibited good biocompatibility and certain potential biological imaging application. This study provides a potential way to develop molecules with fluorescent properties and bioactivities for SHP1.
Collapse
Affiliation(s)
- Xue Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Min Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Ting Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Jie Yu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; Higher Institute of Applied Science and Technology, Department of Pharmaceutical and Chemical Industries, Damascus, 31983, Syria
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; School of Chemical and Material Engineering, Jiangnan University, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Oyeneyin OE, Ibrahim A, Ipinloju N, Ademoyegun AJ, Ojo ND. Insight into the corrosion inhibiting potential and anticancer activity of 1-(4-methoxyphenyl)-5-methyl-N'-(2-oxoindolin-3-ylidene)-1H-1,2,3-triazole-4-carbohydrazide via computational approaches. J Biomol Struct Dyn 2023; 42:11149-11166. [PMID: 37747068 DOI: 10.1080/07391102.2023.2260491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Cancer is a major health concern globally. Orthodox and traditional medicine have actively been explored to manage this disease. Also, corrosion is a natural catastrophe that weakens and deteriorates metallic structures and their alloys causing major structural failures and severe economic implications. Designing and exploring multi-functional materials are beneficial since they are adaptive to different fields including engineering and pharmaceutics. In this study, we examined the anti-corrosion and anti-cancer potentials of 1-(4-methoxyphenyl)-5-methyl-N'-(2-oxoindolin-3-ylidene)-1H-1,2,3-triazole-4-carbohydrazide (MAC) using computational approaches. The molecular reactivity descriptors and charge distribution parameters of MAC were studied in gas and water at density functional theory (DFT) at B3LYP/6-311++G(d,p) theory level. The binding and mechanism of interaction between MAC and iron surface was studied using Monte Carlo (MC) and molecular dynamics (MD) simulation in hydrochloric acid medium. From the DFT, MC, and MD simulations, it was observed that MAC interacted spontaneously with iron surface essentially via van der Waal and electrostatic interactions. The near-parallel alignment of the corrosion inhibitor on iron plane facilitates its adsorption and isolation of the metal surface from the acidic solution. Further, the compound was docked in the binding pocket of anaplastic lymphoma kinase (ALK: 4FNZ) protein to assess its anti-cancer potential. The binding score, pharmacokinetics, and drug-likeness of MAC were compared with the reference drug (Crizotinib). The MAC displayed binding scores of -5.729 kcal/mol while Crizotinib has -3.904 kcal/mol. MD simulation of the complexes revealed that MAC is more stable and exhibits more favourable hydrogen bonding with the ALK receptor's active site than Crizotinib.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oluwatoba Emmanuel Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- School of Chemistry and Physics, University of Kwazulu-Natal, Durban, South Africa
| | - Abdulwasiu Ibrahim
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto Nigeria
| | - Nureni Ipinloju
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Adeniyi John Ademoyegun
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | |
Collapse
|
3
|
Villagracia AR, Pedrosa GR, Ong HL, Lin H, David M, Arboleda N. First principles investigation on the hydrogen adsorption on planar aluminene with boron, carbon, and nitrogen as impurities. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2086182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A. R. Villagracia
- Department of Physics, De La Salle University, Manila, Philippines
- Advanced Nanomaterials Investigation by Molecular Simulations, De La Salle University, Manila, Philippines
| | - G. R. Pedrosa
- Department of Physics, De La Salle University, Manila, Philippines
| | - H. L. Ong
- School of Materials Engineering, Universiti Malaysia Perlis, Arau, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau, Malaysia
- Taiwan-Malaysia Innovation Center for Clean Water and Sustainable Energy, Arau, Malaysia
| | - H. Lin
- Academia Sinica, Institute of Physics, Taipei, Taiwan
| | - M. David
- Department of Physics, De La Salle University, Manila, Philippines
- Advanced Nanomaterials Investigation by Molecular Simulations, De La Salle University, Manila, Philippines
| | - N. Arboleda
- Department of Physics, De La Salle University, Manila, Philippines
- Advanced Nanomaterials Investigation by Molecular Simulations, De La Salle University, Manila, Philippines
| |
Collapse
|
4
|
Antonelli R, Malpass GRP, da Silva MGC, Vieira MGA. Fixed-Bed Adsorption of Ciprofloxacin onto Bentonite Clay: Characterization, Mathematical Modeling, and DFT-Based Calculations. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Raissa Antonelli
- School of Chemical Engineering, University of Campinas, Albert Einstein, 500, Campinas, São Paulo 13083-852, Brazil
| | - Geoffroy Roger Pointer Malpass
- Department of Chemical Engineering, Federal University of the Triângulo Mineiro, Randolfo Borges Júnior, 1400, Uberaba, Minas Gerais 38064-200, Brazil
| | | | | |
Collapse
|