1
|
Sanchez‐Martinez S, Nguyen K, Biswas S, Nicholson V, Romanyuk AV, Ramirez J, Kc S, Akter A, Childs C, Meese EK, Usher ET, Ginell GM, Yu F, Gollub E, Malferrari M, Francia F, Venturoli G, Martin EW, Caporaletti F, Giubertoni G, Woutersen S, Sukenik S, Woolfson DN, Holehouse AS, Boothby TC. Labile assembly of a tardigrade protein induces biostasis. Protein Sci 2024; 33:e4941. [PMID: 38501490 PMCID: PMC10949331 DOI: 10.1002/pro.4941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins, which also function to prevent perturbations induced by drying in vitro and in heterologous systems. CAHS proteins have been shown to form gels both in vitro and in vivo, which has been speculated to be linked to their protective capacity. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of fibrillization and gelation for CAHS D similar to that of intermediate filament assembly. We show that in vitro, gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo, we observe that CAHS D forms fibrillar networks during osmotic stress. Fibrillar networking of CAHS D improves survival of osmotically shocked cells. We observe two emergent properties associated with fibrillization; (i) prevention of cell volume change and (ii) reduction of metabolic activity during osmotic shock. We find that there is no significant correlation between maintenance of cell volume and survival, while there is a significant correlation between reduced metabolism and survival. Importantly, CAHS D's fibrillar network formation is reversible and metabolic rates return to control levels after CAHS fibers are resolved. This work provides insights into how tardigrades induce reversible biostasis through the self-assembly of labile CAHS gels.
Collapse
Affiliation(s)
| | - K. Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - V. Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. V. Romanyuk
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
| | - J. Ramirez
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Kc
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. Akter
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - C. Childs
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. K. Meese
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. T. Usher
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - G. M. Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - F. Yu
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - E. Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - M. Malferrari
- Dipartimento di Chimica “Giacomo Ciamician”Università di BolognaBolognaItaly
| | - F. Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
| | - G. Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA)Università di BolognaBolognaItaly
| | - E. W. Martin
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - F. Caporaletti
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - G. Giubertoni
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Woutersen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Sukenik
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - D. N. Woolfson
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
- School of BiochemistryUniversity of Bristol, Biomedical Sciences BuildingBristolUK
| | - A. S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - T. C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
2
|
Eliášová K, Konrádová H, Dobrev PI, Motyka V, Lomenech AM, Fischerová L, Lelu-Walter MA, Vondráková Z, Teyssier C. Desiccation as a Post-maturation Treatment Helps Complete Maturation of Norway Spruce Somatic Embryos: Carbohydrates, Phytohormones and Proteomic Status. FRONTIERS IN PLANT SCIENCE 2022; 13:823617. [PMID: 35237290 PMCID: PMC8882965 DOI: 10.3389/fpls.2022.823617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/27/2021] [Accepted: 01/04/2022] [Indexed: 06/12/2023]
Abstract
Exposure of Norway spruce (Picea abies) somatic embryos and those of many other conifers to post-maturation desiccation treatment significantly improves their germination. An integration analysis was conducted to understand the underlying processes induced during the desiccation phase at the molecular level. Carbohydrate, protein and phytohormone assays associated with histological and proteomic studies were performed for the evaluation of markers and actors in this phase. Multivariate comparison of mature somatic embryos with mature desiccated somatic embryos and/or zygotic embryos provided new insights into the processes involved during the desiccation step of somatic embryogenesis. Desiccated embryos were characterized by reduced levels of starch and soluble carbohydrates but elevated levels of raffinose family oligosaccharides. Desiccation treatment decreased the content of abscisic acid and its derivatives but increased total auxins and cytokinins. The content of phytohormones in dry zygotic embryos was lower than in somatic embryos, but their profile was mostly analogous, apart from differences in cytokinin profiles. The biological processes "Acquisition of desiccation tolerance", "Response to stimulus", "Response to stress" and "Stored energy" were activated in both the desiccated somatic embryos and zygotic embryos when compared to the proteome of mature somatic embryos before desiccation. Based on the specific biochemical changes of important constituents (abscisic acid, raffinose, stachyose, LEA proteins and cruciferins) induced by the desiccation treatment and observed similarities between somatic and zygotic P. abies embryos, we concluded that the somatic embryos approximated to a state of desiccation tolerance. This physiological change could be responsible for the reorientation of Norway spruce somatic embryos toward a stage suitable for germination.
Collapse
Affiliation(s)
- Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Konrádová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Petre I. Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Lucie Fischerová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | |
Collapse
|
3
|
Mihailova G, Vasileva I, Gigova L, Gesheva E, Simova-Stoilova L, Georgieva K. Antioxidant Defense during Recovery of Resurrection Plant Haberlea rhodopensis from Drought- and Freezing-Induced Desiccation. PLANTS 2022; 11:plants11020175. [PMID: 35050062 PMCID: PMC8778515 DOI: 10.3390/plants11020175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
In this study, the contribution of nonenzymatic (ascorbate, glutathione) and enzymatic antioxidants (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase) in the first hours of recovery of the resurrection plant Haberlea rhodopensis from drought- and freezing-induced desiccation was assessed. The initial stage of recovery after desiccation is critical for plants, but less investigated. To better understand the alterations in the activity of antioxidant enzymes, their isoenzyme patterns were determined. Our results showed that ascorbate content remained high during the first 9 h of rehydration of desiccated plants and declined when the leaves′ water content significantly increased. The glutathione content remained high at the first hour of rehydration and then strongly decreased. The changes in ascorbate and glutathione content during recovery from drought- and freezing-induced desiccation showed great similarity. At the beginning of rehydration (1–5 h), the activities of antioxidant enzymes were significantly increased or remained as in dry plants. During 7–24 h of rehydration, certain differences in the enzymatic responses between the two plant groups were registered. The maintenance of a high antioxidant activity and upregulation of individual enzyme isoforms indicated their essential role in protecting plants from oxidative damage during the onset of recovery.
Collapse
Affiliation(s)
- Gergana Mihailova
- Laboratory of Photosynthesis–Activity and Regulation, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Ivanina Vasileva
- Laboratory of Experimental Algology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113 Sofia, Bulgaria; (I.V.); (L.G.)
| | - Liliana Gigova
- Laboratory of Experimental Algology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113 Sofia, Bulgaria; (I.V.); (L.G.)
| | - Emiliya Gesheva
- Laboratory of Plant-Soil Interactions, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria;
| | - Lyudmila Simova-Stoilova
- Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Katya Georgieva
- Laboratory of Photosynthesis–Activity and Regulation, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
- Correspondence: or ; Tel.: +359-2-979-2620
| |
Collapse
|
4
|
Neeragunda Shivaraj Y, Plancot B, Ramdani Y, Gügi B, Kambalagere Y, Jogaiah S, Driouich A, Ramasandra Govind S. Physiological and biochemical responses involved in vegetative desiccation tolerance of resurrection plant Selaginella brachystachya. 3 Biotech 2021; 11:135. [PMID: 33680700 PMCID: PMC7897589 DOI: 10.1007/s13205-021-02667-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 12/30/2022] Open
Abstract
The vegetative desiccation tolerance of Selaginella brachystachya has been evaluated for its ability to revive from a desiccation (air dry) state and start normal functioning when rehydrated. In this study, S. brachystachya was identified by DNA barcoding. Experiments were conducted using the detached hydrated, desiccated and rehydrated fronds under laboratory conditions to understand the mechanism of revival upon the water availability. Scanning Electron Microscope images during desiccation showed closed stomata and inside curled leaves. Chlorophyll concentration decreased by 1.1 fold in desiccated state and recovered completely upon rehydration. However, the total carotenoid content decreased 4.5 fold while the anthocyanin concentration increased 5.98 fold and the CO2 exchange rate became negative during desiccation. Lipid peroxidation and superoxide radical production were enhanced during desiccation by 68.32 and 73.4%, respectively. Relative electrolyte leakage was found to be minimal during desiccation. Activities of antioxidant enzymes, namely peroxidase (158.33%), glutathione reductase (107.70%), catalase (92.95%) and superoxide dismutase (184.70%) were found to be higher in the desiccated state. The proline concentration increased by 1.4 fold, starch concentration decreased 3.9 fold and sucrose content increased 2.8 fold during desiccation. Upon rehydration, S. brachystachya recovered its original morphology, physiological and biochemical functions. Our results demonstrate that S. brachystachya minimizes desiccation stress through a range of morphological, physiological and biochemical mechanisms. These results provide useful insights into desiccation tolerance mechanisms for potential utilization in enhancing stress tolerance in crop plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02667-1.
Collapse
Affiliation(s)
- Yathisha Neeragunda Shivaraj
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga 577451 India
- Department of Studies and Research in Biotechnology and Microbiology, Tumkur University, Tumakuru, 57210 India
| | - Barbara Plancot
- Laboratoire de Glycobiologie Et Matrice Extracellulaire Végétale, Université de Rouen, 76000 Rouen, Normandie France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Yasmina Ramdani
- Laboratoire de Glycobiologie Et Matrice Extracellulaire Végétale, Université de Rouen, 76000 Rouen, Normandie France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Bruno Gügi
- Laboratoire de Glycobiologie Et Matrice Extracellulaire Végétale, Université de Rouen, 76000 Rouen, Normandie France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Yogendra Kambalagere
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga 577451 India
| | - Sudisha Jogaiah
- Department of Studies and Research in Biotechnology and Microbiology, Karnataka University, Dharwad, India
| | - Azeddine Driouich
- Laboratoire de Glycobiologie Et Matrice Extracellulaire Végétale, Université de Rouen, 76000 Rouen, Normandie France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | | |
Collapse
|