1
|
Shevtsov M, Bobkov D, Yudintceva N, Likhomanova R, Kim A, Fedorov E, Fedorov V, Mikhailova N, Oganesyan E, Shabelnikov S, Rozanov O, Garaev T, Aksenov N, Shatrova A, Ten A, Nechaeva A, Goncharova D, Ziganshin R, Lukacheva A, Sitovskaya D, Ulitin A, Pitkin E, Samochernykh K, Shlyakhto E, Combs SE. Membrane-bound Heat Shock Protein mHsp70 Is Required for Migration and Invasion of Brain Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2025-2044. [PMID: 39015084 PMCID: PMC11317918 DOI: 10.1158/2767-9764.crc-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Molecular chaperones, especially 70 kDa heat shock protein, in addition to their intracellular localization in cancer cells, can be exposed on the surface of the plasma membrane. We report that the membrane-associated chaperone mHsp70 of malignant brain tumors is required for high migratory and invasive activity of cancer cells. Live-cell inverted confocal microscopy of tumor samples from adult (n = 23) and pediatric (n = 9) neurooncologic patients showed pronounced protein expression on the membrane, especially in the perifocal zone. Mass spectrometry analysis of lipid rafts isolated from tumor cells confirmed the presence of the protein in the chaperone cluster (including representatives of other families, such as Hsp70, Hsc70, Hsp105, and Hsp90), which in turn, during interactome analysis, was associated with proteins involved in cell migration (e.g., Rac1, RhoC, and myosin-9). The use of small-molecule inhibitors of HSP70 (PES and JG98) led to a substantial decrease in the invasive potential of cells isolated from a tumor sample of patients, which indicates the role of the chaperone in invasion. Moreover, the use of HSP70 inhibitors in animal models of orthotopic brain tumors significantly delayed tumor progression, which was accompanied by an increase in overall survival. Data demonstrate that chaperone inhibitors, particularly JG98, disrupt the function of mHsp70, thereby providing an opportunity to better understand the diverse functions of this protein and offer aid in the development of novel cancer therapies. SIGNIFICANCE Membrane-bound mHsp70 is required for brain tumor cell migration and invasion and therefore could be employed as a target for anticancer therapies.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Danila Bobkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia.
| | - Natalia Yudintceva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Ruslana Likhomanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alexander Kim
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evegeniy Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Natalia Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Elena Oganesyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Sergey Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Oleg Rozanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Timur Garaev
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Nikolay Aksenov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alla Shatrova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Anastasiya Nechaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Daria Goncharova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.
| | - Anastasiya Lukacheva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Daria Sitovskaya
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Alexey Ulitin
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evgeny Shlyakhto
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Wang J, Zhang J, Guo Z, Hua H, Zhang H, Liu Y, Jiang Y. Targeting HSP70 chaperones by rhein sensitizes liver cancer to artemisinin derivatives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155156. [PMID: 37897861 DOI: 10.1016/j.phymed.2023.155156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Liver cancer is one of common types of cancer with poor prognosis and limited therapies. Heat shock proteins (HSP) are molecular chaperones that have important roles in tumorigenesis, and emerging as therapeutic targets. Artemisinin and rhein are natural agents from Artemisia annua L. and Rheum undulatum L., respectively. Both rhein and artemisinin have anticancer effects; however, the molecular targets of rhein remain to be identified. It is also unclear whether rhein can synergize with artemisinin derivatives to inhibit liver cancer. PURPOSE We aim to identify the targets of rhein in the treatment of hepatocarcinoma and determine the effects of combining rhein and artemisinin derivatives on liver cancer cells. METHODS The targets of rhein were detected by mass spectrometry and validated by rhein-proteins interaction assays. The effects of rhein on the chaperone activity of HSP72/HSC70/GRP78 were determined by luciferase refolding assays. Cell viability and apoptosis were determined by CCK8 and flow cytometry assays. For in vivo study, xenograft tumor models were established and treated with rhein and artesunate. Tumor growth was monitored regularly. RESULTS Mass spectrometry analysis of rhein-binding proteins in HepG2 cells revealed that HSP72, HSC70 and GRP78 were more profoundly pulled down by rhein-crosslinked sepharose 4B beads compared to the control beads. Further experiments demonstrated that rhein directly interacted with HSP72/HSC70/GRP78 proteins, and inhibit their activity of refolding denatured luciferase. Meanwhile, rhein induced proteasomal degradation of HIF1α and β-catenin. Artesunate or dihydroartemisinin in combination with knockdown of both HSP72 and HSC70 significantly inhibited cell viability. The HSP70/HSC70/GRP78 inhibitors VER-155,008 and rhein phenocopied HSP72/HSC70 knockdown, synergizing with artesunate or dihydroartemisinin to inhibit hepatocarcinoma cell viability. Combinatorial treatment with rhein and artemisinin derivatives significantly induced hepatocarcinoma cell apoptosis, and inhibited tumor growth in vivo. CONCLUSIONS The current study demonstrates that rhein is a novel HSP72/HSC70/GRP78 inhibitor that suppresses the chaperone activity of HSP70s. Dual inhibition of HSP72 and HSC70 can enhance the sensitivity of hepatocarcinoma cells to artemisinin derivatives. Combined treatment with artemisinin derivative and rhein significantly inhibits hepatocarcinoma. Artemisinin derivatives in combination with dual inhibition of HSP72 and HSC70 represents a new approach to improve cancer therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, China
| | - Jin Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Zeyu Guo
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, China
| | - Hongying Zhang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yongliang Liu
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China
| | - Yangfu Jiang
- Cancer center, Laboratory of Oncogene, West China Hospital, Sichuan University, China.
| |
Collapse
|
3
|
Bracho-Valdés I, Cervantes-Villagrana RD, Beltrán-Navarro YM, Olguín-Olguín A, Escobar-Islas E, Carretero-Ortega J, Olivares-Reyes JA, Reyes-Cruz G, Gutkind JS, Vázquez-Prado J. Akt Is Controlled by Bag5 through a Monoubiquitination to Polyubiquitination Switch. Int J Mol Sci 2023; 24:17531. [PMID: 38139359 PMCID: PMC10743781 DOI: 10.3390/ijms242417531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The serine-threonine kinase Akt plays a fundamental role in cell survival, metabolism, proliferation, and migration. To keep these essential processes under control, Akt activity and stability must be tightly regulated; otherwise, life-threatening conditions might prevail. Although it is well understood that phosphorylation regulates Akt activity, much remains to be known about how its stability is maintained. Here, we characterize BAG5, a chaperone regulator, as a novel Akt-interactor and substrate that attenuates Akt stability together with Hsp70. BAG5 switches monoubiquitination to polyubiquitination of Akt and increases its degradation caused by Hsp90 inhibition and Hsp70 overexpression. Akt interacts with BAG5 at the linker region that joins the first and second BAG domains and phosphorylates the first BAG domain. The Akt-BAG5 complex is formed in serum-starved conditions and dissociates in response to HGF, coincident with BAG5 phosphorylation. BAG5 knockdown attenuated Akt degradation and facilitated its activation, whereas the opposite effect was caused by BAG5 overexpression. Altogether, our results indicate that Akt stability and signaling are dynamically regulated by BAG5, depending on growth factor availability.
Collapse
Affiliation(s)
- Ismael Bracho-Valdés
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico; (I.B.-V.)
- Academic Department of Apparatus and Systems I, Deanship of Health Sciences, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan 45129, Mexico
| | - Rodolfo Daniel Cervantes-Villagrana
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico; (I.B.-V.)
- Department of Pharmacology, Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - Yarely Mabell Beltrán-Navarro
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico; (I.B.-V.)
| | - Adán Olguín-Olguín
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico; (I.B.-V.)
| | - Estanislao Escobar-Islas
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico; (I.B.-V.)
| | - Jorge Carretero-Ortega
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico; (I.B.-V.)
| | - J. Alberto Olivares-Reyes
- Department of Biochemistry, Cinvestav-IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Cinvestav-IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - J. Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA
| | - José Vázquez-Prado
- Department of Pharmacology, Cinvestav-IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico; (I.B.-V.)
| |
Collapse
|
4
|
Xiang D, Jiang M, Chen Y, Liu C, Li L. Clinicopathological and prognostic significance of heat shock proteins in hepatocellular carcinoma: a systematic review and meta-analysis. Front Oncol 2023; 13:1169979. [PMID: 37601679 PMCID: PMC10436519 DOI: 10.3389/fonc.2023.1169979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Overexpression of heat shock proteins (HSPs) has been observed in a wide range of human tumors, and there is an increasing evidence demonstrated that HSPs play a key role in tumor progression. Several studies were conducted to explore the clinicopathological characteristics and prognostic value of HSPs in hepatocellular carcinoma (HCC), but the results remain controversial. To address this gap, we conducted a systematic review and meta-analysis. Methods The eligible literature was obtained from PubMed, Cochrane library, Web of science, Embase, Chinese National Knowledge Infrastructure and Wan Fang databases. We used the odds ratio (OR) and hazard ratio (HR) as the suitable parameters to assess the clinicopathological features and prognostic value of HSPs in HCC patients. Results The meta-analysis results showed that HSPs expression was associated with overall survival (OS) of HCC patients (HR = 1.61, 95%CI = 1.22-2.13, P=0.001, I 2 = 62.7%). In addition, the pooled results suggested that HSPs expression was significantly correlated with tumor differentiation (OR = 1.33, 95%CI = 1.08-1.65, P = 0.907), vascular invasion (OR = 1.31, 95%CI = 1.02-1.69, P = 0.921) and lymphatic metastasis (OR=1.98, 95%CI= 1.70-2.31, P = 0.740). Meanwhile, the subgroup analysis showed a significant correlation between the expression of HSP27 (HR=1.69, 95%CI = 1.24-2.31, P = 0.674) and HSP90α (HR=2.03, 95%CI = 1.73-2.40, P = 0.743) with OS of HCC patients. Conclusions Our meta-analysis confirms that HSPs expression is closely associated with a worse prognosis in HCC patients, and may be directly involved in tumor differentiation and distant metastasis. In addition, the subgroup analysis results demonstrate that the expression of HSP27 and HSP90α can be served as potential prognostic predictors of HCC.
Collapse
Affiliation(s)
- Dan Xiang
- Department of Laboratory Medicine, Ya’an People’s Hospital, Yaan, China
| | - Mengdan Jiang
- Department of Laboratory Medicine, Ya’an People’s Hospital, Yaan, China
| | - Ya Chen
- Department of General Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Chengjiang Liu
- Department of General Medicine, Affiliated Anqing First People’s Hospital of Anhui Medical University, Anqing, China
| | - Leilei Li
- Disaster Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wang S, Ge F, Cai T, Qi S, Qi Z. [Dihydromyricetin inhibits proliferation and migration of gastric cancer cells through regulating Akt/STAT3 signaling pathways and HMGB1 expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:87-92. [PMID: 33509758 DOI: 10.12122/j.issn.1673-4254.2021.01.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the inhibitory effects of dihydromyricetin on the proliferation and migration of gastric cancer BGC-823 cells and explore the molecular mechanisms. METHODS BGC-823 cells in routine culture were treated with different concentrations of dihydromyricetin (0, 40, 60, 80, 100, and 120 μg/mL) for 24 h, and the changes in cell viability were detected using CCK-8 assay; colony forming assay and Transwell assay were performed to assess the changes in colonyforming and migration abilities of the cells, respectively. The levels of MMP-2 and MMP-9 in the treated cells were determined using ELISA, and Western blotting was used to detect the expressions of E-cadherin, N-cadherin, cyclin D1, cyclin E1, HSP70 and HMGB1 and the phosphorylation levels of Akt and Stat3. RESULTS CCK-8 assay showed that dihydromyricetin treatment dose-dependently inhibited the viability of BGC-823 cells (P < 0.05). Treatment with dihydromyricetin obviously suppressed the proliferation and migration of BGC-823 cells, significantly reduced the expression levels of cyclin D1, cyclin E1 and Ncadherin, enhanced E-cadherin expression, inhibited the phosphorylation of Akt and stat3, and downregulated HMGB1 expression in the cells. The results of ELISA demonstrated significantly lowered levels of MMP-2 and MMP-9 in dihydromyricetin-treated cells. CONCLUSIONS Dihydromyricetin inhibits the proliferation and migration of BGC-823 cells through suppressing the activation of Akt/stat3 signaling pathways and HMGB1 expression.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China
| | - Fei Ge
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Tianyu Cai
- Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China.,School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - Shimei Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|