1
|
Fraqueza MJ, Alfaia CM, Rodrigues SS, Teixeira A. Strategies to Reduce Salt Content: PDO and PGI Meat Products Case. Foods 2024; 13:2681. [PMID: 39272447 PMCID: PMC11395686 DOI: 10.3390/foods13172681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
The reduction of sodium chloride (NaCl) content, commonly known as salt, in processed meat products is one of the objectives of health organizations and government authorities to achieve healthier products. This reformulation of traditional meat products with protected designations poses more constraints, as they have a more consolidated quality image and less margin for change, since consumers appreciate the products for their unique sensory characteristics. The aim of this work is to present some of the strategies that have been explored to obtain meat products with low sodium content. Information related to the characteristics of traditional meat products with quality marks and geographical indications in different studies is discussed in opposition to the information recorded in their product specifications. It was found that the product specifications of meat products with Portuguese Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) show a wide variation in the NaCl content, much higher than the recommended values. Thus, one of the requirements to be implemented will be the parameterization of NaCl levels and their monitorization by control and certification organizations as a way to ensure product quality. It is also urgent to examine whether healthy innovation strategies may affect the quality of traditional PDO or PGI meat products and whether they can be included in the respective product specifications.
Collapse
Affiliation(s)
- Maria João Fraqueza
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cristina Mateus Alfaia
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Sandra Sofia Rodrigues
- CIMO-Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), 5300-253 Bragança, Portugal
| | - Alfredo Teixeira
- CIMO-Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Russo NP, Ballotta M, Usai L, Torre S, Giordano M, Fais G, Casula M, Dessì D, Nieri P, Damergi E, Lutzu GA, Concas A. Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content. Mar Drugs 2024; 22:381. [PMID: 39330262 PMCID: PMC11433411 DOI: 10.3390/md22090381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Arthrospira platensis holds promise for biotechnological applications due to its rapid growth and ability to produce valuable bioactive compounds like phycocyanin (PC). This study explores the impact of salinity and brewery wastewater (BWW) on the mixotrophic cultivation of A. platensis. Utilizing BWW as an organic carbon source and seawater (SW) for salt stress, we aim to optimize PC production and biomass composition. Under mixotrophic conditions with 2% BWW and SW, A. platensis showed enhanced biomass productivity, reaching a maximum of 3.70 g L-1 and significant increases in PC concentration. This study also observed changes in biochemical composition, with elevated protein and carbohydrate levels under salt stress that mimics the use of seawater. Mixotrophic cultivation with BWW and SW also influenced the FAME profile, enhancing the content of C16:0 and C18:1 FAMES. The purity (EP of 1.15) and yield (100 mg g-1) of PC were notably higher in mixotrophic cultures, indicating the potential for commercial applications in food, cosmetics, and pharmaceuticals. This research underscores the benefits of integrating the use of saline water with waste valorization in microalgae cultivation, promoting sustainability and economic efficiency in biotechnological processes.
Collapse
Affiliation(s)
- Nicola Pio Russo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41123 Modena, MO, Italy; (N.P.R.); (M.B.)
| | - Marika Ballotta
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41123 Modena, MO, Italy; (N.P.R.); (M.B.)
| | - Luca Usai
- Teregroup Srl, Via David Livingstone 37, 41123 Modena, MO, Italy;
| | - Serenella Torre
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, PI, Italy; (S.T.); (P.N.)
| | | | - Giacomo Fais
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, CA, Italy; (G.F.); (M.C.)
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, CA, Italy
| | - Mattia Casula
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, CA, Italy; (G.F.); (M.C.)
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, CA, Italy
| | - Debora Dessì
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, CA, Italy;
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, PI, Italy; (S.T.); (P.N.)
| | - Eya Damergi
- Algaltek SARL, R&D Departments, Route de la Petite-Glane 26, 1566 Saint Aubin, FR, Switzerland;
| | | | - Alessandro Concas
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, CA, Italy; (G.F.); (M.C.)
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, CA, Italy
| |
Collapse
|
3
|
Shi H, Zhang Y, Lin H, Yan Y, Wang R, Wu R, Wu J. Production of polyunsaturated fatty acids in pork backfat fermented by Mucor circinelloides. Appl Microbiol Biotechnol 2024; 108:223. [PMID: 38376614 PMCID: PMC10879235 DOI: 10.1007/s00253-024-13018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Pork backfat (PB) contains excessive saturated fatty acids (SFAs), but lacks polyunsaturated fatty acids (PUFAs). Excessive SFAs can be used as a substrate for the growth of certain microorganisms that convert them into PUFAs and monounsaturated fatty acids (MUFAs), and the added value of PB can be enhanced. In this study, Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189 were co-cultured for conversion of PB into fermented pork backfat (FPB) with high level of PUFAs. Our results showed that the content of γ-linolenic acid (GLA) and linoleic acid (LA) in the surface of FPB reached 9.04 ± 0.14 mg/g and 107.31 ± 5.16 mg/g for 7-day fermentation, respectively. To convert the internal SFAs of PB, ultrasound combined with papain was used to promote the penetrative growth of M. circinelloides into the internal PB, and the GLA level in the third layer of fat reached 2.58 ± 0.31 mg/g FPB. The internal growth of M. circinelloides in PB was promoted by adjusting the oxygen rate and ventilation rate through the wind velocity sensor. When the oxygen rate is 2 m/s and the ventilation rate is 18 m3/h, the GLA level in the third layer of fat reached 4.13 ± 1.01 mg/g FPB. To further improve the level of PUFAs in PB, FPB was produced by M. circinelloides at 18 °C. The GLA content on the surface of FPB reached 15.73 ± 1.13 mg/g FPB, and the GLA yield in the second and third layers of fat reached 8.68 ± 1.77 mg/g FPB and 6.13 ± 1.28 mg/g FPB, the LA yield in the second and third layers of fat reached 105.45 ± 5.01 mg/g FPB and 98.46 ± 4.14 mg/g FPB, respectively. These results suggested that excessive SFAs in PB can be converted into PUFAs and provided a new technique for improving PUFAs in FPB. KEY POINTS: • This article achieved the conversion of PUFAs in pork backfat by Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189. • This article solved the internal growth of M. circinelloides CBS277.49 in pork backfat by ultrasound combined with papain. • This article proposed an innovative of promoting the internal growth of M. circinelloides and increasing the PUFAs production by oxygen ventilation in pork backfat.
Collapse
Affiliation(s)
- Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Hao Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yiran Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Ruhong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
4
|
Kostrzewa D, Mazurek B, Kostrzewa M, Jóźwik E. Carotenoids and Fatty Acids Obtained from Paprika Capsicum annuum by Supercritical Carbon Dioxide and Ethanol as Co-Extractant. Molecules 2023; 28:5438. [PMID: 37513310 PMCID: PMC10386050 DOI: 10.3390/molecules28145438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Paprika Capsicum annuum L. contains useful molecules such as carotenoids and polyunsaturated fatty acids, which are considered high-value functional and health ingredients. To obtain these compounds, paprika was extracted using different methods (Soxhlet, SC-CO2, and SC-CO2 with co-extractant) and at different parameters. The results showed that the carotenoid content decreased with the addition of the co-extractant while the fatty acid content and yield increased. It was found that the highest carotenoid content (capsanthin > β-carotene > capsorubin > zeaxanthin > β-cryptoxanthin > violaxanthin) was obtained at 50 °C/45 MPa for SC-CO2 extraction. Paprika extract rich in polyunsaturated fatty acids (linoleic, oleic, and α-linolenic acid) was obtained at 40 °C/25 MPa for SC-CO2 with co-extractant. The PUFA/SFA ratios for paprika extract were in agreement with the recommendations of nutritional guidelines. The use of SC-CO2 for the extraction of Capsicum annuum allowed us to obtain a high-quality, rich in carotenoids and polyunsaturated fatty acids, extract that can be used as a substrate in the industry.
Collapse
Affiliation(s)
- Dorota Kostrzewa
- Łukasiewicz Research Network-New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13A, 24-110 Pulawy, Poland
| | - Barbara Mazurek
- Łukasiewicz Research Network-New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13A, 24-110 Pulawy, Poland
| | - Marcin Kostrzewa
- Faculty of Chemical Engineering and Commodity Science, Kazimierz Pulaski University of Technology and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Emilia Jóźwik
- Łukasiewicz Research Network-New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13A, 24-110 Pulawy, Poland
| |
Collapse
|
5
|
Rubak YT, Lalel HJD, Sanam MUE. Physicochemical, microbiological, and sensory characteristics of " Sui Wu'u" traditional pork products from Bajawa, West Flores, Indonesia. Vet World 2023; 16:1165-1175. [PMID: 37576773 PMCID: PMC10420695 DOI: 10.14202/vetworld.2023.1165-1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Sui Wu'u is a traditional meat preservation product from Bajawa, a region in East Nusa Tenggara. It is made by mixing pork with salt and corn flour, which is then stored in a bamboo container (tuku) for months. After 6 months of storage, this study examined the physicochemical, microbiological, and sensory properties of Sui Wu'u. Materials and Methods Sui Wu'u products were prepared using the traditional recipe from the Bajawa community. Fresh pork (pork belly and backfat), corn flour, and salt were purchased from local/traditional markets at proportions of 65%, 30%, and 5%, respectively. The physicochemical, amino acid, fatty acid profile, microbiological, and sensory properties of Sui Wu'u were evaluated after being stored for 6 months in a bamboo container (tuku). Results The results indicated that these Sui Wu'u were mainly characterized by high-fat levels, followed by protein. The pH value, salt content, moisture content, and water activity were 4.72%, 1.72%, 6.11%, and 0.62%, respectively. Minerals (K, P, Se, and Zn) and vitamin B6, as well as amino acids, such as leucine, phenylalanine, lysine (essential amino acids), glycine, proline, glutamic acid, and alanine (non-essential amino acids), are present in Sui Wu'u. The fatty acid profile was dominated by monounsaturated fatty acids (MUFA) (21.69%), saturated fatty acids (SFA) (17.78%), and polyunsaturated fatty acids (PUFA) (5.36%). Monounsaturated fatty acids, oleic acid (C18:1n9) was the most abundant fatty acid in Sui Wu'u, followed by palmitic acid SFA (C16:0); MUFA stearic acid (C18:0); and PUFA linoleic (C18:2n-6). The microbiological characteristics of Sui Wu'u showed no detectable microorganisms (<10 CFU/g) for Salmonella, total E. coli and total Staphylococcus, and average values of 4.4 × 105 CFU/g for total microbes, which were still below the maximum limit of microbial contamination according to the regulations of the Food and Drug Supervisory Agency of the Republic of Indonesia. The sensory assessment indicated that panelists highly preferred (rated as very like) Sui Wu'u for all sensory attributes. Conclusion The physicochemical, microbiological, and sensory characteristics of Sui Wu'u after 6 months of storage indicated that it still provides essential nutrients for the body and is quite safe for consumption. The stability of Sui Wu'u's shelf life can be attributed to the appropriate combination of pork, salt, corn flour, bamboo packaging (tuku), and storage temperature. The high-fat content in Sui Wu'u can be reduced by increasing the proportion of lean meat. Ensuring strict sanitation during the manufacturing process, using high-quality pork, salt, corn flour, and proper packaging with bamboo can further improve the safety of Sui Wu'u for consumption.
Collapse
Affiliation(s)
- Yuliana Tandi Rubak
- Department of Agrotechnology, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| | - Herianus J. D. Lalel
- Department of Agrotechnology, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| | - Maxs Urias Ebenhaizar Sanam
- Department of Animal Diseases Sciences and Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| |
Collapse
|
6
|
Norouzi Fard M, Nouri M. New formulation of fermented sausages towards healthier and quality rectification by adding <em>Ferulago angulata</em> essential oil. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The demand is improved for ready-to-eat meals by lifestyle changes and fermented sausages are popular meat products because of their flavor. Natural compositions are considered as substitutes of synthetic preservatives in products, which have been extensively employed. The aim of present research is to investigate the impact of Ferulago Angulata Essential Oil (FAEO) as an antimicrobial and antioxidant factor for preserving of dry fermented sausages throughout storage. Initially, FAEO was extracted using microwave assisted hydrodistillation and its components were identified by gas chromatography-mass spectroscopy. Fermented sausages were treated by starter culture (Biobak K) and FAEO at various concentrations (0, 400, 800 and 1000 ppm). Afterwards, tests such as pH, moisture, thiobarbituric acid, texture, microbial growth, electron microscope images, and sensory evaluation were conducted during storage (28 d). The high levels of bioactive compositions such as limonene (30.71%) and α-pinene (19.02%) were indicated in FAEO. The results illustrated that pH and moisture of all fermented sausages were within the standard range during storage. At different concentrations, FAEO significantly decreased thiobarbituric acid of treated samples compared to control (p<0.05). Furthermore, FAEO was able to improve cohesiveness and elasticity of fermented sausages, which were also visible in electron microscope images. Antimicrobial feature of FAEO was distinguished by evaluating microbial attributes (total viable count, lactic acid bacteria and yeast) in fermented sausages. Ultimately, FAEO at 800 ppm concentration was detected as a promising and appropriate natural preservative during storage in fermented sausages.
Collapse
|
7
|
Ferreira I, Vasconcelos L, Leite A, Botella-Martínez C, Pereira E, Mateo J, Kasaiyan S, Teixeira A. Use of Olive and Sunflower Oil Hydrogel Emulsions as Pork Fat Replacers in Goat Meat Burgers: Fat Reduction and Effects in Lipidic Quality. Biomolecules 2022; 12:1416. [PMID: 36291625 PMCID: PMC9599731 DOI: 10.3390/biom12101416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Diversified strategies to incorporate healthier lipids in processed meat products are being developed. Alternative fat sources to replace animal fat associated with the reduction of fat content are some of the methods used to obtain healthier meat products well recognized by consumers. In order to create a healthier product that can also be consumed in the Halal and Kosher consumer markets, an experimental study was developed to assess the effects of replacing the pork fat (4%) with the same amount of hydrogel emulsion incorporating olive oil or sunflower oil. Three burgers were randomly selected from each lot manufactured and analyzed in triplicate. Burgers were physicochemical analyzed for pH, water activity, composition, fatty acid profile, color, yield, texture, oxidative stability, and volatile compounds and compared according to the fat source. Burgers with hydrogel emulsions can be considered reduced-fat meat products with a healthier fatty acid profile than pork fat burgers. The use of hydrogel emulsions did not negatively affect the quality characteristics assessed in the product and improved the oxidative stability during the storage of cooked burgers. By the characteristics and formulations evaluated, the replacement of pork fat with olive oil hydrogel emulsion proved to be the most effective strategy for obtaining a healthier goat meat product.
Collapse
Affiliation(s)
- Iasmin Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lia Vasconcelos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Leite
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carmen Botella-Martínez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental CIAGRO, Miguel Hernández University, 03312 Orihuela, Spain
| | - Etelvina Pereira
- Escola Superior Agrária. Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Javier Mateo
- Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Campus Vegazana s/n, 24007 León, Spain
| | - Seyedalireza Kasaiyan
- Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Campus Vegazana s/n, 24007 León, Spain
| | - Alfredo Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Escola Superior Agrária. Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Zampouni K, Soniadis A, Dimakopoulou-Papazoglou D, Moschakis T, Biliaderis C, Katsanidis E. Modified fermented sausages with olive oil oleogel and NaCl–KCl substitution for improved nutritional quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Teixeira A, Ferreira I, Pereira E, Vasconcelos L, Leite A, Rodrigues S. Physicochemical Composition and Sensory Quality of Goat Meat Burgers. Effect of Fat Source. Foods 2021; 10:1824. [PMID: 34441600 PMCID: PMC8391382 DOI: 10.3390/foods10081824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Several strategies for producing healthier meat products have been developed. Reducing fat content, using different fat sources, modifying and improving the fatty acid profile or even replacing saturated fat with oleogels are some of the methods used. Goat meat mainly from animals out of quality brands with low commercial value can be valorized when processed, giving the opportunity to increase its consumption and acceptability. Thus, the aim of this study was to study the effect of the replacement of pork as a source of fat with an olive oleogel in burgers manufactured with goat meat and to compare the goat meat burgers with the most common commercial burgers made with beef. Two replications of the burgers were manufactured at different times, and three samples of each burger type (GOO-goat meat burgers with olive oil; GPF-goat meat burgers with pork fat) were randomly selected from each lot manufactured. Each sample was analyzed in triplicate for each physicochemical analysis. At the time, the manufactured burgers were analyzed simultaneously with the commercial burgers. The burgers with olive oil (GOO) showed higher a* and b* than the burgers with pork fat (GPF) and consequently had lower h° and C*. The ashes, protein and collagen contents of the GOO and GPF burgers were similar to those of the other goat meat products. The effect of the incorporation of oleogel on the physicochemical composition of the burgers in relation to the pork fat was expressed in the fat content, 4 and 2.78% for GOO and GPF, respectively. CH burgers have significantly higher fat content (13.45%) than GOO and GPF burgers. The replacement of pork backfat with a vegetable oleogel modified the fatty acids profile, since the GOO burgers had the highest MUFA and PUFA and the lipidic quality, defined by the IA and IT indices, was 0.38 and 0.99, respectively. Globally, goat burgers were sensorially harder and presented a more difficult chewiness than CH. The replacement of the pork back fat with oleogel significantly decreased hardness and chewiness.
Collapse
Affiliation(s)
- Alfredo Teixeira
- Mountain Research Centre (CIMO), Escola Superior Agrária, Instituto Politécnico de Bragança, Campus Sta Apolónia Apt, 5300-253 Bragança, Portugal; (I.F.); (L.V.); (A.L.); (S.R.)
| | - Iasmin Ferreira
- Mountain Research Centre (CIMO), Escola Superior Agrária, Instituto Politécnico de Bragança, Campus Sta Apolónia Apt, 5300-253 Bragança, Portugal; (I.F.); (L.V.); (A.L.); (S.R.)
| | - Etelvina Pereira
- Escola Superior Agrária, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
| | - Lia Vasconcelos
- Mountain Research Centre (CIMO), Escola Superior Agrária, Instituto Politécnico de Bragança, Campus Sta Apolónia Apt, 5300-253 Bragança, Portugal; (I.F.); (L.V.); (A.L.); (S.R.)
| | - Ana Leite
- Mountain Research Centre (CIMO), Escola Superior Agrária, Instituto Politécnico de Bragança, Campus Sta Apolónia Apt, 5300-253 Bragança, Portugal; (I.F.); (L.V.); (A.L.); (S.R.)
| | - Sandra Rodrigues
- Mountain Research Centre (CIMO), Escola Superior Agrária, Instituto Politécnico de Bragança, Campus Sta Apolónia Apt, 5300-253 Bragança, Portugal; (I.F.); (L.V.); (A.L.); (S.R.)
| |
Collapse
|