1
|
Jebesa WT, Astatkie T, Zerfu A, Kenea HD, Abamecha N, Shumuye M, Abera G, Kidane A, Hirko M, Assefa F. Impact of brewery sludge application on heavy metal build-up, translocation, growth and yield of bread wheat ( Triticum aestivum L.) crop in Northern Ethiopia. Heliyon 2024; 10:e32559. [PMID: 38961976 PMCID: PMC11219491 DOI: 10.1016/j.heliyon.2024.e32559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
In a field study, the impact of different levels of brewery sludge (BS) enrichment on Triticum aestivum L. (wheat plants) was examined in terms of growth, yield, heavy metal absorption, and potential health risks linked to plant consumption. Using a randomized complete block design with seven treatments and three blocks, the study showed that applying up to 12 t ha-1 brewery sludge significantly improved all agronomic parameters (except harvest index) compared to control and mineral-fertilized soil. Heavy metal translocation was generally low, except for Cu and Pb. The sequence of heavy metal translocation was Cu > Pb > Cd > Ni > Zn > Mn > Cr from soil to spikes and Cu > Zn > Mn > Pb > Ni > Cd > Cr from soil to grain. Heavy metal loads were mostly higher in roots than in the above-ground crop parts. The target hazard quotient (THQ), hazard index (HI), and target cancer risk (TCR) within wheat grain remained within safe limits for all BS treatments. Consequently, consuming this wheat grain is considered safe regarding heavy metals. Thus, utilizing brewery sludge at 12 t ha-1 as a fertilizer for wheat production and as an alternative method for sludge disposal is plausible.
Collapse
Affiliation(s)
| | | | - Ambachew Zerfu
- College of Agriculture and Natural Resource, Bonga University, Bonga, Ethiopia
| | - Hawi Deressa Kenea
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Nezif Abamecha
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Meresa Shumuye
- College of Agriculture and Natural Resource, Raya University, Maychew, Ethiopia
| | - Gezai Abera
- College of Agriculture and Natural Resource, Raya University, Maychew, Ethiopia
| | - Asmeret Kidane
- College of Agriculture and Natural Resource, Raya University, Maychew, Ethiopia
| | - Mignote Hirko
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Fenta Assefa
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Sundha P, Basak N, Rai AK, Chandra P, Bedwal S, Yadav G, Yadav RK, Sharma PC. Characterization and ecotoxicological risk assessment of sewage sludge from industrial and non-industrial cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116567-116583. [PMID: 35779215 DOI: 10.1007/s11356-022-21648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The present study highlights the occurrence and the temporal variations of physicochemical properties, and heavy metals in the sludge from sewage treatment plants (STPs) located in industrial (two sites) and non-industrial (one site) cities of Haryana, India. The sludge was acidic (5.59) to neutral (7.21) with a mean EC of 7.4 dS m-1. Prominent heavy metals present in the sewage sludge from industrial sites were Cd, Ni, and Cr with maximum values of 2.83, 1449.0, and 3918.5 mg kg-1, respectively. The contamination and enrichment factor better explained the buildup of Ni, Cr, and Cu in the sewage sludge from industrial sites. The pH, total carbon, phosphorus, and other water-soluble anions, viz. SO42-, Cl-, HCO3-, and PO43-, were the most important attributes of sludge controlling the binding and removal of the metals with particulate matters during the phase separation in STPs. These attributes explained about 90% of the variation in Cd, Ni, Cr, Cu, Mn, and Zn content of the sludge from different STPs. Sludge from the non-industrial site had a low potential ecological risk index of 74.0 compared to a very high-risk index of 2186.5 associated with the industrial sites. This study concludes that besides the concentration of the heavy metals, the enrichment factor coupled with geo-accumulation or ecological risk index can effectively categorize the sludge. However, these indices need to be linked with bioaccumulation, bioaccessibility, and biomass quality under different agroecologies for guiding the safer use of sewage sludge in agriculture.
Collapse
Affiliation(s)
- Parul Sundha
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | - Nirmalendu Basak
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India.
| | - Arvind Kumar Rai
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | - Priyanka Chandra
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | - Sandeep Bedwal
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | - Gajender Yadav
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | | | | |
Collapse
|
3
|
Jalali M, Imanifard A, Jalali M. Heavy metals accumulation in wheat (Triticum aestivum L.) roots and shoots grown in calcareous soils treated with non-spiked and spiked sewage sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20862-20873. [PMID: 36260228 DOI: 10.1007/s11356-022-23604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
With growing urbanization and agriculture, the quantity of sewage sludge production increases every year. For the purpose of risk management, it is crucial to figure out how much heavy metals are transported to different parts of plants when sewage sludge is used. A greenhouse experiment was carried out to investigate the accumulation of heavy metals in wheat (Triticum aestivum L.) grown in 30 calcareous soils. The soils in this study were subjected to three different treatments: soils treated with sewage sludge at a rate of 2.5%, soils treated with sewage sludge at a rate of 2.5% and enriched with heavy metals, and control soils that received neither sewage sludge nor heavy metals. Wheat grown in sewage sludge-treated soils had the highest mean dry matter, and was 2.11 and 1.25 times greater than wheat grown in control and spiked-sewage sludge-treated soils, respectively. In all treatments, wheat roots had greater heavy metal levels than wheat shoots. Among all the heavy metals examined, Pb and Cu had the highest bioconcentration factors for roots and shoots (BCFRoots and BCFShoots) in control and sewage sludge-treated soils, followed by Cd in spiked-sewage sludge-treated soils, and Co and Ni had the lowest BCFRoots and BCFShoots across all treatments. In spiked-sewage sludge-treated soils, the root restriction for heavy metals translocation was more important for Co, Cu, and Ni than for Pb and Zn, indicating that wheat can be grown safely in a variety of calcareous soils amended with sewage sludge with high content of Cd, Co, Cu, and Ni. Reducing the transfer of Pb and Zn from soils to wheat in soils treated with sewage sludge yet having high concentrations of these heavy metals should be considered as a top priority strategy for preserving wheat products. Since a wide range of calcareous soils was used in this study and because calcareous soils make up the majority of soils in the Middle East, the findings are relevant for all of the countries in this region.
Collapse
Affiliation(s)
- Mohsen Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Abolfazle Imanifard
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
4
|
Woreta G, Guadie A, Mulu M, Beshaw T, Lijalem T, Ezez D, Kokeb A, Leggesse M, Tefera M. Occurrence and accumulation of metals in lupine seeds in Ethiopia. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Pandey B, Suthar S, Chand N. Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. CHEMOSPHERE 2022; 307:135889. [PMID: 35944681 DOI: 10.1016/j.chemosphere.2022.135889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The use of low-cost substances such as biochar could be a sustainable approach to reduce the mobility, accumulation, and toxic impact of heavy metals in crop systems. This study investigates the effect of biochar amendment on heavy metal (Cr, Cd, Cu, Pb, Ni, Zn, Mg and Fe) mobility, bioaccumulation factor (BAF), plant (wheat) metal-uptake, plant oxidative stress, and soil enzymatic profile in contaminated industrial soil. Biochar was obtained from slow pyrolysis of Lantana (LBC), and Parthenium (PBC) biomass, and applied at 3% rates in contaminated soils for wheat crop study under a greenhouse experimental setup. Results show in comparison with control setups, low mobility of Cr (14.15-16.35%), Cd (7.17-15.24%), Cu (9.81-12.97%), Pb (7.99-15.23%), Ni (1.52-2.38%), Zn (10.47-14.42%), Mg (48.85-52.89%), and Fe (19.13-19.90%) contents in soils. The heavy metal uptake rates were 63.08% (Cr), 78.07% (Cd), 74.61% (Cu), 78.11% (Pb), 75.73% (Ni), 69.71% (Zn), 28.78% (Mg), and 49.26% (Fe) lower in biochar amendments, compared with the control treatments. Similarly, the biochar amended treatments exhibited low oxidative stress in wheat plants than control setups. In addition, soil enzymes (dehydrogenase, β-glucosidase, alkaline phosphatase, and urease) alleviated in biochar amended soils indicating reduced toxicity of metals in experimental soils. In summary, this study indicates that biochar amendment in contaminated soils not only improves plant growth but also lowers the rates of soil and plant toxicity and metal bioavailability as well.
Collapse
Affiliation(s)
- Bhawna Pandey
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India.
| | - Naveen Chand
- Environmental Engineering Research Group, National Institute of Technology Delhi, New Delhi, 110040, India
| |
Collapse
|