1
|
Keerthana SP, Yuvakkumar R, Ravi G, Sankar VR, Metha SA, Sagadevan S. Efficient photocatalytic degradation of organic pollutants using α-SnWO 4 with g-C 3N 4 nanocomposites for wastewater remediation. CHEMOSPHERE 2024; 368:143691. [PMID: 39510261 DOI: 10.1016/j.chemosphere.2024.143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Wastewater management has become necessary in this industrialized era to meet the water needs of the world. Wastewater is one of the major crises in depletion of the environment. Photocatalysis is considered as the best way to remove pollutants. Therefore, in this study, pure and g-C3N4-SnWO4 nanocomposites were produced employing hydrothermal route. Prepared composites were studied by various techniques. SnWO4 band gap were altered by introduction of g-C3N4. The morphology was uniformly developed by the addition of g-C3N4 to the SnWO4. Evans Blue dye was employed as model pollutant. The photocatalytic action was improved by adding g-C3N4, which formed a heterojunction with SnWO4. The calculated rate constant was 0.000878, 0.0068, 0.01 and 0.0122 min-1 for EB, SnWO4-EB, 0.1 g g-C3N4-SnWO4-EB and 0.2 g g-C3N4-SnWO4-EB. The rate constant increased for 0.2 g g-C3N4-SnWO4 photocatalyst. A heterojunction appeared between g-C3N4 and SnWO4 facilitated SnWO4 for better e-/h+pair's separation and a lower recombination rate, which increased photocatalytic action of product. 0.2 g of g-C3N4-SnWO4 is a promising candidate for future wastewater degradation.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India; Department of Physics, Chandigarh University, Mohali, 140 413, Punjab, India.
| | - V Ravi Sankar
- Department of Civil Engineering, Thiagarajar College of Engineering, Madurai, 625 015, Tamil Nadu, India
| | - S Arun Metha
- Department of Electronics and Communication Engineering. Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, 522 302, India
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
2
|
Magdy A, Mostafa MR, Moustafa SA, Mohamed GG, Fouad OA. Kinetics and adsorption isotherms studies for the effective removal of Evans blue dye from an aqueous solution utilizing forsterite nanoparticles. Sci Rep 2024; 14:24392. [PMID: 39420054 PMCID: PMC11487128 DOI: 10.1038/s41598-024-73697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
In the present day, water treatment has emerged as a significant global concern, particularly due to the proliferation of pollution sources. The utilization of dyes, such as Evans blue, in several industries is among the most significant contributors to these pollutants. Forsterite nanoparticles were synthesized by the sol-gel technique and calcined at different temperatures to determine the optimum temperature at which pure nanoforsterite was obtained. Then, it was analyzed using X-ray diffraction (XRD), atomic force microscope (AFM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) , contact angle, and zero-point charge. The adsorption capability of forsterite nanoparticles (Nps) was evaluated by a batch adsorption experimental method to remove Evans blue dye (EBD). Parameters such as agitation speed, dosage of forsterite Nps, pH, and contact time were considered at ambient temperature. At pH = 3, dose of Nps = 1 g/L, and 600 rpm within 10 min, the results indicated a removal rate of around 100%. Furthermore, it was shown that the material may be employed for 3 cycles with a removal rate of 90%. Multiple kinetic and isotherm models, including Langmuir, Temkin, and Freundlich models, were used to analyze the results and clarify the mechanism of the adsorption phenomena. The findings from the isotherm and kinetic studies indicated that the system conforms to Langmuir and pseudo-second-order, respectively.
Collapse
Affiliation(s)
- Ahmed Magdy
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Maysa R Mostafa
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Saied A Moustafa
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, 21934, Alexandria, Egypt
| | - Omar A Fouad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
3
|
Jinendra U, Majani SS, Bilehal D, Nagabhushana B, Nadaf Y, Iqbal M, Shivamallu C, Kollur SP. Investigations of adsorption and photoluminescence properties of encapsulated Al-ZnO nanostructures: Synthesis, morphology and dye degradation studies. Heliyon 2024; 10:e34427. [PMID: 39104478 PMCID: PMC11298942 DOI: 10.1016/j.heliyon.2024.e34427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
This study focuses on the solution combustion approach to examine the nanostructures of undoped and doped ZnO with different concentrations of Al (0.1 % and 0.2 %). Various physical techniques were utilized to characterize the synthesized nanoparticles. X-ray diffraction (XRD) revealed the crystalline materials, while scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) findings confirmed the products with particle size and the insertion of Al into the ZnO lattice. Fourier-transform infrared spectra (FTIR) confirmed the presence of different functional groups in the obtained material. The results indicate that Al-doped ZnO (Al-ZnO) nanoparticles show promising properties for optoelectronics and photoluminescence. Photoluminescence analysis indicated that an increase in Al3+ (0.2 %) concentration resulted in a decrease in peak intensity and an increase in the full width at half maximum. The band gap was calculated using the Taucs plot. The study also highlights the effectiveness of Zn1-xAlxO nanostructures in degrading organic pollutants, particularly in adsorbing Malachite Green (MG) dye. Among the samples, the 0.2 % Al-doped ZnO exhibited superior dye degradation efficiency due to its enhanced adsorption capacity and smaller particle size, as evidenced by multilayer adsorption capacity and chemisorption during the degradation process. This study provides valuable insights into the potential applications of Al-doped ZnO nanoparticles in various environmental and technological fields, emphasizing their significance in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Usha Jinendra
- Department of Chemistry, The Oxford College of Engineering, Bommasandra, Bangalore, Karnataka, India
| | - Sanjay S. Majani
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, 570 026, Karnataka, India
| | - Dinesh Bilehal
- Department of Chemistry, Karnatak University, Dharwad, 560 008, Karnataka, India
| | - B.M. Nagabhushana
- Department of Chemistry, MSRIT, Bengaluru, 560 054, Karnataka, India
| | - Y.F. Nadaf
- Department of Physics, Maharani Cluster University, Palace Road, Bangalore, Karnataka, India
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, 570 026, Karnataka, India
| |
Collapse
|
4
|
Ma T, Li H, Yu Y, Wang K, Yu W, Shang Y, Bai Y, Zhang R, Yang Y, Nie X. Lattice-Confined Single-Atom Catalyst: Preparation, Application and Electron Regulation Mechanism. SMALL METHODS 2024:e2400530. [PMID: 39007247 DOI: 10.1002/smtd.202400530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Lattice-confined single-atom catalyst (LC SAC), featuring exceptional activity, intriguing stability and prominent selectivity, has attracted extensive attention in the fields of various reactions (e.g., hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), etc.). To design a "smart" LC SAC for catalytic applications, one must systematically comprehend updated advances in the preparation, the application, and especially the peculiar electron regulation mechanism of LC SAC. In this review, the specific preparation methods of LC SAC based on general coordination strategy are updated, and its applications in HER, OER, ORR, N2 reduction reaction (NRR), advanced oxidation processes (AOPs) and so forth are summarized to display outstanding activity, stability and selectivity. Uniquely, the electron regulation mechanisms are first and deeply discussed and can be primarily categorized as electron transfer bridge with monometallic active sites, novel catalytic centers with polymetallic active sites, and positive influence by surrounding environments. In the end, the existing issues and future development directions are put forward with a view to further optimize the performance of LC SAC. This review is expected to contribute to the in-depth understanding and practical application of highly efficient LC SAC.
Collapse
Affiliation(s)
- Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yanyan Yu
- Yantai Environmental Sanitation Management Center, Yantai, 264000, China
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yu Shang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yilin Bai
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Rongyu Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiangqi Nie
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
5
|
Khetagoudar MC, Jinendra U, Praveen Kumar A, Bilehal D, Prasad Kollur S. Multiresidue pesticide analysis in green chilli using GC–MS/MS using modified QuEChERS method with highly efficient Fe3O4@CFR@GO nanocomposite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Process Parameters Optimization, Characterization, and Application of KOH-Activated Norway Spruce Bark Graphitic Biochars for Efficient Azo Dye Adsorption. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020456. [PMID: 35056771 PMCID: PMC8780614 DOI: 10.3390/molecules27020456] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
Abstract
In this work, Norway spruce bark was used as a precursor to prepare activated biochars (BCs) via chemical activation with potassium hydroxide (KOH) as a chemical activator. A Box–Behnken design (BBD) was conducted to evaluate and identify the optimal conditions to reach high specific surface area and high mass yield of BC samples. The studied BC preparation parameters and their levels were as follows: pyrolysis temperature (700, 800, and 900 °C), holding time (1, 2, and 3 h), and ratio of the biomass: chemical activator of 1: 1, 1.5, and 2. The planned BBD yielded BC with extremely high SSA values, up to 2209 m2·g−1. In addition, the BCs were physiochemically characterized, and the results indicated that the BCs exhibited disordered carbon structures and presented a high quantity of O-bearing functional groups on their surfaces, which might improve their adsorption performance towards organic pollutant removal. The BC with the highest SSA value was then employed as an adsorbent to remove Evans blue dye (EB) and colorful effluents. The kinetic study followed a general-order (GO) model, as the most suitable model to describe the experimental data, while the Redlich–Peterson model fitted the equilibrium data better. The EB adsorption capacity was 396.1 mg·g−1. The employment of the BC in the treatment of synthetic effluents, with several dyes and other organic and inorganic compounds, returned a high percentage of removal degree up to 87.7%. Desorption and cyclability tests showed that the biochar can be efficiently regenerated, maintaining an adsorption capacity of 75% after 4 adsorption–desorption cycles. The results of this work pointed out that Norway spruce bark indeed is a promising precursor for producing biochars with very promising properties.
Collapse
|