Zhang M, Zhang Z, Li Y. Mechanisms and Origins of Regio- and Stereoselectivities in NHC-Catalyzed [3 + 3] Annulation of α-Bromoenals and 5-Aminoisoxazoles: A DFT Study.
J Org Chem 2024;
89:10748-10759. [PMID:
38996054 DOI:
10.1021/acs.joc.4c00980]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Density functional theory (DFT) calculations were conducted to explore the mechanisms and origins of regio- and stereoselectivities underlying the [3 + 3] annulation reaction between α-bromoenals and 5-aminoisoxazoles with N-heterocyclic carbene (NHC) as the catalyst. The reaction occurs in nine steps: (1) nucleophilic addition of NHC to α-bromoenal, (2) Breslow intermediate formation through 1,2-proton transfer, (3) debromination, (4) α,β-unsaturated acyl azolium intermediate formation via 1,3-proton transfer, (5) addition of α,β-unsaturated acyl azolium intermediate to 5-aminoisoxazole, (6) deprotonation, (7) protonation, (8) ring closure, and (9) elimination of NHC. For the fifth step, 1,2-addition suggested in the experiment was not supported by our results. Instead, we found that Michael addition is energetically the most feasible pathway and the stereo-controlling step that preferentially provides the S-configuration product. DFT-computed results and experimental findings agree well. Analysis of distortion/interaction reveals that lower distortion energy leads to stability of the transition state corresponding to the S-configuration product. Global reactivity index analysis indicates that the behavior of the NHC catalyst differs significantly before and after the Breslow intermediate debromination. Before debromination, the nucleophilicity of α-bromoenal is enhanced by addition to NHC. However, after debromination, the α,β-unsaturated acyl azole generates and acts as an electrophilic reagent.
Collapse