1
|
Akhigbe RE, Akhigbe TM, Oyedokun PA, Famurewa AC. Molecular mechanisms underpinning the protection against antiretroviral drug-induced sperm-endocrine aberrations and testicular toxicity: A review. Reprod Toxicol 2024; 128:108629. [PMID: 38825169 DOI: 10.1016/j.reprotox.2024.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The introduction of highly active antiretroviral therapy (HAART) has revolutionized the treatment of HIV/AIDS worldwide. The HAART approach is the combination of two or more antiretroviral drugs of different classes and are responsible for patient's survival and declining death rates from HIV/AIDS and AIDS-related events. However, the severe and persistent reproductive side effect toxicity of HAART regimens is of great concern to patients within the reproductive age. Till date, the underlying pathophysiology of the HAART-induced reproductive toxicity remains unraveled. Nevertheless, preclinical studies show that oxidative stress and inflammation may be involved in HAART-induced sperm-endocrine deficit and reproductive aberrations. Studies are emerging demonstrating the efficacy of plant-based and non-plant products against the molecular alterations and testicular toxicity of HAART. The testicular mechanisms of mitigation by these products are associated with enhancement of testicular steroidogenesis, spermatogenesis, inhibition of oxidative stress and inflammation. This review presents the toxic effects of HAART on spermatogenesis, reproductive hormones and testis integrity. It also provides insights on the molecular mechanisms underlying the mitigation of HAART testicular toxicity by plant-based and non-plant agents. However, effect of repurposing clinical drugs to combat HAART toxicity is unknown, and more mechanistic studies are evidently needed. Altogether, plant-based and non-plant products are potential agents for prevention of rampant endocrine dysfunction and testicular toxicity of HAART.
Collapse
Affiliation(s)
- Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Breeding and Genetics Unit, Department of Agronomy, Osun State University, Ejigbo Campus, Osun State, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria.
| |
Collapse
|
2
|
Lawal SK, Olojede SO, Faborode OS, Aladeyelu OS, Matshipi MN, Sulaiman SO, Naidu ECS, Rennie CO, Azu OO. Nanodelivery of antiretroviral drugs to nervous tissues. Front Pharmacol 2022; 13:1025160. [PMID: 36425574 PMCID: PMC9680985 DOI: 10.3389/fphar.2022.1025160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 01/06/2025] Open
Abstract
Despite the development of effective combined antiretroviral therapy (cART), the neurocognitive impairments associated with human immunodeficiency virus (HIV) remain challenging. The presence of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCFB) impedes the adequate penetration of certain antiretroviral drugs into the brain. In addition, reports have shown that some antiretroviral drugs cause neurotoxicity resulting from their interaction with nervous tissues due to long-term systemic exposure. Therefore, the research into the effective therapeutic modality that would cater for the HIV-associated neurocognitive disorders (HAND) and ART toxicity is now receiving broad research attention. Thus, this review explores the latest information in managing HAND using a nanoparticle drug delivery system (NDDS). We discussed the neurotoxicity profile of various approved ART. Also, we explained the applications of silver nanoparticles (AgNPs) in medicine, their different synthesis methods and their interaction with nervous tissues. Lastly, while proposing AgNPs as useful nanoparticles in properly delivering ART to enhance effectiveness and minimize neurocognitive disorders, we hypothesize that the perceived toxicity of AgNPs could be minimized by taking appropriate precautions. One such precaution is using appropriate reducing and stabilizing agents such as trisodium citrate to reduce silver ion Ag + to ground state Ag0 during the synthesis. Also, the usage of medium-sized, spherical-shaped AgNPs is encouraged in AgNPs-based drug delivery to the brain due to their ability to deliver therapeutic agents across BBB. In addition, characterization and functionalization of the synthesized AgNPs are required during the drug delivery approach. Putting all these factors in place would minimize toxicity and enhance the usage of AgNPs in delivering therapeutic agents across the BBB to the targeted brain tissue and could cater for the HIV-associated neurocognitive disorders and neurotoxic effects of antiretroviral drugs (ARDs).
Collapse
Affiliation(s)
- Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Oluwaseun Samuel Faborode
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, Bingham University, Karu, Nasarawa State, Nigeria
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Matome Nadab Matshipi
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sheu Oluwadare Sulaiman
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
- Graduate Program in Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Edwin Coleridge Stephen Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological and Translational Medical Sciences, School of Medicine, Hage Geingob Campus, University of Namibia, Windhoek, Namibia
| |
Collapse
|
3
|
Olojede SO, Lawal SK, Faborode OS, Dare A, Aladeyelu OS, Moodley R, Rennie CO, Naidu EC, Azu OO. Testicular ultrastructure and hormonal changes following administration of tenofovir disoproxil fumarate-loaded silver nanoparticle in type-2 diabetic rats. Sci Rep 2022; 12:9633. [PMID: 35688844 PMCID: PMC9187647 DOI: 10.1038/s41598-022-13321-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Reproductive dysfunctions (RDs) characterized by impairment in testicular parameters, and metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM) are on the rise among human immunodeficiency virus (HIV) patients under tenofovir disoproxil fumarate (TDF) and highly active antiretroviral therapy (HAART). These adverse effects require a nanoparticle delivery system to circumvent biological barriers and ensure adequate ARVDs to viral reservoir sites like testis. This study aimed to investigate the effect of TDF-loaded silver nanoparticles (AgNPs), TDF-AgNPs on sperm quality, hormonal profile, insulin-like growth factor 1 (IGF-1), and testicular ultrastructure in diabetic rats, a result of which could cater for the neglected reproductive and metabolic dysfunctions in HIV therapeutic modality. Thirty-six adult Sprague–Dawley rats were assigned to diabetic and non-diabetic (n = 18). T2DM was induced by fructose-streptozotocin (Frt-STZ) rat model. Subsequently, the rats in both groups were subdivided into three groups each (n = 6) and administered distilled water, TDF, and TDF-AgNP. In this study, administration of TDF-AgNP to diabetic rats significantly reduced (p < 0.05) blood glucose level (268.7 ± 10.8 mg/dL) from 429 ± 16.9 mg/dL in diabetic control and prevented a drastic reduction in sperm count and viability. More so, TDF-AgNP significantly increased (p < 0.05) Gonadotropin-Releasing Hormone (1114.3 ± 112.6 µg), Follicle Stimulating Hormone (13.2 ± 1.5 IU/L), Luteinizing Hormone (140.7 ± 15.2 IU/L), testosterone (0.2 ± 0.02 ng/L), and IGF-1 (1564.0 ± 81.6 ng/mL) compared to their respective diabetic controls (383.4 ± 63.3, 6.1 ± 1.2, 76.1 ± 9.1, 0.1 ± 0.01, 769.4 ± 83.7). Also, TDF-AgNP treated diabetic rats presented an improved testicular architecture marked with the thickened basement membrane, degenerated Sertoli cells, spermatogenic cells, and axoneme. This study has demonstrated that administration of TDF-AgNPs restored the function of hypothalamic-pituitary–gonadal axis, normalized the hormonal profile, enhanced testicular function and structure to alleviate reproductive dysfunctions in diabetic rats. This is the first study to conjugate TDF with AgNPs and examined its effects on reproductive indices, local gonadal factor and testicular ultrastructure in male diabetic rats with the potential to cater for neglected reproductive dysfunction in HIV therapeutic modality.
Collapse
Affiliation(s)
- Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa.
| | - Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Oluwaseun Samuel Faborode
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa.,Department of Physiology, Faculty of Basic Medical Sciences, Bingham University, Karu, Nasarawa State, Nigeria
| | - Ayobami Dare
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Roshila Moodley
- The Department of Chemistry, The University of Manchester, Manchester, UK
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Edwin Coleridge Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological & Translational Medical Sciences, School of Medicine, University of Namibia, Hage Geingob Campus, Private Bag 13301, Windhoek, Namibia
| |
Collapse
|