1
|
Feng A, Li C, Su S, Liu Y. 1,25(OH)2D3 supplementation alleviates gut-vascular barrier disruption via inhibition of S100B/ADAM10 pathway. Tissue Barriers 2024; 12:2327776. [PMID: 38494646 PMCID: PMC11583585 DOI: 10.1080/21688370.2024.2327776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Gut-vascular barrier (GVB) is the second barrier in mucosa to control systemic dissemination of gut bacteria. Severe burns induce enteroglial cells to produce S100B and endothelial cells to generate ADAM10 and cause vitamin D3 insufficiency/deficiency and GVB disruption. It is not clear whether vitamin D3 supplementation attenuates GVB damage via regulation of S100B/ADAM10 pathway. Here, GVB disruption was induced by 30% of total body surface area scalds. Rats were treated with 1,25(OH)2D3 (0.05, 0.5 or 5 μg/kg) or S100B monoclonal antibody (S100BmAb, 10 μg/kg) or GI254023X (ADAM10 inhibitor, 100 mg/kg). Rat enteric glial cell-line CRL2690 and rat intestinal microvascular endothelial cells (RIMECs) were treated with S100B (5 μM) or plus 1,25(OH)2D3 (0.05, 0.5 or 5 μM) or GI254023X (5 μM). S100B, TNF-α, 25(OH)D3 and 1,25(OH)2D3 in serum and gut mucosa were determined by enzyme-linked immunosorbent assay. The endothelial permeability was measured using FITC-dextran 70 kDa. ADAM10 and β-catenin expression was assayed by Western blot. The results showed that 1,25(OH)2D3 and 25(OH)D3 concentration in serum reduced whereas TNF-α and S100B in serum and gut mucosa increased in burned rats. S100BmAb, GI254023X and 1,25(OH)2D3 treatment lowered burns-increased GVB permeability. 1,25(OH)2D3 also decreased S100B concentration in serum and gut mucosa. 1,25(OH)2D3 inhibited S100B release from TNF-α-treated CRL2690 and raised β-catenin while decreasing ADAM10 protein in S100B-treated RIMECs. 1,25(OH)2D3 and GI254023X also decreased the endothelial permeability of S100B-treated RIMECs. Collectively, these findings provide evidence that severe burns lower serum 25(OH)D3 and 1,25(OH)2D3 concentration. 1,25(OH)2D3 supplementation alleviates burns-elicited GVB disruption via inhibition of S100B/ADAM10 signaling.
Collapse
Affiliation(s)
- Aiwen Feng
- Department of General Surgery, Maoming People's Hospital, Southern Medical University, Zhanjiang, China
- Department of General Surgery, Maoming People's Hospital, Guangdong Medical University, Guangzhou, China
| | - Cheng Li
- Department of General Surgery, Maoming People's Hospital, Southern Medical University, Zhanjiang, China
| | - Shaosheng Su
- Department of General Surgery, Maoming People's Hospital, Guangdong Medical University, Guangzhou, China
| | - Yingyan Liu
- Department of General Surgery, Maoming People's Hospital, Guangdong Medical University, Guangzhou, China
| |
Collapse
|
2
|
Ma S, Song Y, Xu Y, Wang C, Yang Y, Zheng Y, Lu Q, Chen Q, Wu J, Wang B, Chen M. Mild Therapeutic Hypothermia Alleviated Myocardial Ischemia/Reperfusion Injury via Targeting SLC25A10 to Suppress Mitochondrial Apoptosis. J Cardiovasc Transl Res 2024; 17:946-958. [PMID: 38568407 PMCID: PMC11371862 DOI: 10.1007/s12265-024-10503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 09/04/2024]
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) is identified as a severe vascular emergency, and the treatment strategy of MI/RI still needs further improvement. The present study aimed to investigate the potential effects of mild therapeutic hypothermia (MTH) on MI/RI and underlying mechanisms. In ischemia/reperfusion (I/R) rats, MTH treatment significantly improved myocardial injury, attenuated myocardial infarction, and inhibited the mitochondrial apoptosis pathway. The results of proteomics identified SLC25A10 as the main target of MTH treatment. Consistently, SLC25A10 expressions in I/R rat myocardium and hypoxia and reoxygenation (H/R) cardiomyocytes were significantly suppressed, which was effectively reversed by MTH treatment. In H/R cardiomyocytes, MTH treatment significantly improved cell injury, mitochondrial dysfunction, and inhibited the mitochondrial apoptosis pathway, which were partially reversed by SLC25A10 deletion. These findings suggested that MTH treatment could protect against MI/RI by modulating SLC25A10 expression to suppress mitochondrial apoptosis pathway, providing new theoretical basis for clinical application of MTH treatment for MI/RI.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/genetics
- Apoptosis
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Male
- Disease Models, Animal
- Hypothermia, Induced
- Rats, Sprague-Dawley
- Signal Transduction
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/genetics
- Myocardial Infarction/therapy
- Cells, Cultured
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Rats
Collapse
Affiliation(s)
- Senlin Ma
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanxin Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chao Wang
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yifan Yang
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanchao Zheng
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiuxin Lu
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qingjiang Chen
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Mingquan Chen
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
3
|
Fisher MD, Norbury W. Pediatric Burns: From Acute Care Through Reconstruction in 2024. Clin Plast Surg 2024; 51:379-390. [PMID: 38789147 DOI: 10.1016/j.cps.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Children are disproportionately affected by burn injuries. Differences between adult and pediatric burns range from epidemiologic characteristics to pathophysiological considerations, which vary between different age subgroups. All these factors must be considered in each phase of burn care. This article reviews the most important aspects of the management of a pediatric burned patient starting from the acute through reconstructive phases.
Collapse
Affiliation(s)
- Mark D Fisher
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Johns Hopkins Burn Center, 4940 Eastern Avenue Suite, P3-4-11, JHBMC Pavilion Building, Baltimore, MD 21224, USA; Bayview Adult Burn Center.
| | - William Norbury
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Johns Hopkins Burn Center, 4940 Eastern Avenue Suite, P3-4-11, JHBMC Pavilion Building, Baltimore, MD 21224, USA. https://twitter.com/markdfishermd
| |
Collapse
|
4
|
Kim D, Kim W, Kim J, Lee HK, Joo J, Kim B, Allen MG, Lu D, Venkatesh V, Huang Y, Yu KJ, Park YJ, Kim MK, Han S, Won SM. Optimal bilayer composites for temperature-tracking wireless electronics. NANOSCALE 2024. [PMID: 38412042 DOI: 10.1039/d3nr05784d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Modern silicone-based epidermal electronics engineered for body temperature sensing represent a pivotal development in the quest for advancing preventive medicine and enhancing post-surgical monitoring. While these compact and highly flexible electronics empower real-time monitoring in dynamic environments, a noteworthy limitation is the challenge in regulating the infiltration or obstruction of heat from the external environment into the surface layers of these electronics. The study presents a cost-effective temperature sensing solution by embedding wireless electronics in a multi-layered elastomeric composite to meet the dual needs of enhanced thermal insulation for encapsulation in contact with air and improved thermal conductivity for the substrate in contact with the skin. The encapsulating composite benefits from the inclusion of hollow silica microspheres, which reduce the thermal conductivity by 40%, while non-spherical aluminum nitride enhances the thermal conductivity of the substrate by 370%. The addition of particles to the respective composites inevitably leads to an increase in modulus. Two composite elements are engineered to coexist while maintaining a matching low modulus of 3.4 MPa and a stretchability exceeding 30%, all without compromising the optimized thermal properties. Consecutive thermal, electrical, and mechanical characterization confirms the sensor's capacity for precise body temperature monitoring during a single day's lifespan, while also assessing the influence of behavioral factors on body temperature.
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Wooseok Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Jihwan Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Hee Kyu Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Janghoon Joo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Bogeun Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Mark G Allen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dengyang Lu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vishal Venkatesh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanghang Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Jin Park
- KERI (Korea Electrotechnology Research Institute), 111, Hanggaul-ro, Sangrok-gu, Ansan, 15588, Republic of Korea
| | - Mu Kyung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seungyong Han
- Multiscale Bioinspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499 Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
5
|
Wang J, Lu C, Liu X, Zhang G, Zhang J, Gao M, Liu D, Zhang X, Liu Y. Histamine H1 receptor antagonist attenuates catecholamine surge and organ injury after severe burns. Front Endocrinol (Lausanne) 2023; 14:1068925. [PMID: 36843581 PMCID: PMC9946968 DOI: 10.3389/fendo.2023.1068925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Severe burns induce a catecholamine surge, causing severe damage to the organism and raising the possibility of multisystem organ failure. Few strategies are generally acceptable to reduce catecholamine surge and organ injury post-burn. We have previously shown that histamine can amplify the catecholamine surge. In addition, promethazine, a first-generation histamine H1 receptor antagonist, alleviates catecholamine surge and organ injury after severe burns in rats. However, evidence is lacking on whether promethazine benefits patients after severe burns. Currently, sedation and analgesia (such as midazolam and fentanyl) are commonly required for patients after severe burns. It remains unclear if patients after severe burns derive clinical benefit from histamine H1 receptor antagonists combined with sedation and analgesia. This study investigates the therapeutic effect of promethazine on patients after severe burns. Moreover, we test the therapeutic effect of cetirizine, a second-generation histamine H1 receptor antagonist, combined with sedation and analgesia in rats after severe burns. We find that promethazine-pethidine treatment shows a tendency for a lower level of total bilirubin than midazolam-fentanyl in patients 7-day after severe burn. Our study confirms that cetirizine combined with midazolam and fentanyl reduces catecholamine surge and liver and lung damage after severe burns in rats; the effects are better than midazolam and fentanyl treatment. In summary, for the first time, we suggest that histamine H1 receptor antagonist has the potential clinical value of reducing liver injury in patients after severe burns. In addition, we reveal that cetirizine combined with midazolam and fentanyl may be an ideal strategy for treating severe burns.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Liu
- *Correspondence: Yan Liu, ; Xiong Zhang,
| |
Collapse
|
6
|
Wang J, Lu C, Zhang J, Gao M, Liu D, Yang P, Yu T, Wang X, Zhang X, Liu Y. LYTIC COCKTAIL ATTENUATES CATECHOLAMINE SURGE AFTER SEVERE BURNS BY BLOCKING HISTAMINE H1 RECEPTOR/PKA/CREB/TYROSINE HYDROXYLASE SIGNALING IN CHROMAFFIN CELLS. Shock 2022; 58:158-168. [PMID: 35953455 DOI: 10.1097/shk.0000000000001963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Severe burns develop a catecholamine surge, inducing severe damage to the organism, raising the possibility of multisystem organ failure, and even death. The mechanisms of catecholamine surge have not been fully elucidated, and few strategies are generally acceptable to reduce catecholamine surge postburn. Thus, it is valuable to investigate the underlying mechanisms of catecholamine surge postburn to develop targeted interventions to attenuate it. We have found that the lytic cocktail alleviates the surge of catecholamine and organ injury after severe burn; however, the underlying mechanisms were still unclear. Moreover, the lytic cocktail has side effects, such as significant arterial hypotension and breathing depression, limiting its clinical application. This study aims to investigate the therapeutic mechanism of the lytic cocktail in regulating catecholamine levels postburn. We find that promethazine, a classic histamine H1 receptor blocker and a component of the lytic cocktail, can effectively reduce catecholamine surge and organ injury postburn. Our study confirms that blood histamine levels increase after severe burns. We find that histamine can amplify the catecholamine surge by elevating tyrosine hydroxylase expression and catecholamine synthesis in chromaffin cells through the histamine H1 receptor/Protein Kinase A /cAMP-response element binding protein signaling pathway. In summary, for the first time, we find that histamine plays a vital role in catecholamine surge postburn. We also confirm that the lytic cocktail effectively alleviates catecholamine surge and organ injury postburn through promethazine.
Collapse
Affiliation(s)
- Jizhuang Wang
- Department of Burn, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|