1
|
Ghafari S, Karimi J, Cheniany M, Seifi A, Loverodge J, Butt TM. Endophytic entomopathogenic fungi enhance plant immune responses against tomato leafminer. J Invertebr Pathol 2025:108270. [PMID: 39800113 DOI: 10.1016/j.jip.2025.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Plants employ various defense mechanisms to protect themselves from invaders such as microorganisms and herbivores. By recognizing these threats, plants can trigger a cascade of responses throughout their tissues, effectively priming their defenses and enhancing their resistance to future attacks. In this study, we examined the indirect effects of the entomopathogenic fungi Beauveria bassiana strain GHA and Metarhizium anisopliae strain F01 on tomato growth, expression of selected plant genes, production of secondary metabolites, and preference and performance of the tomato leafminer (Tuta absoluta). Both B. bassiana and M. anisopliae colonized tomato endophytically. Plants treated with B. bassiana had greater biomass than the untreated control and M. anisopliae treated plants. Oviposition was lower on plants treated with B. bassiana and M. anisopliae than on untreated controls in both choice and no-choice studies, and both endophytic EPF also affected the development of leafminer larvae. Gene expression analysis of tomato leaves inoculated with endophytic EPF provided evidence of triggering plant immune response genes, and of priming genes for herbivore attack, making plants more resistant to herbivory. These findings provide important insights into the mechanisms by which B. bassiana and M. anisopliae promote tomato plant growth and rapidly respond to T. absoluta infestation by priming the immune system. This knowledge could improve the development of entomopathogenic fungi for use in plant-protection strategies.
Collapse
Affiliation(s)
- Sepideh Ghafari
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Alireza Seifi
- Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Joel Loverodge
- Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| |
Collapse
|
2
|
Compant S, Cassan F, Kostić T, Johnson L, Brader G, Trognitz F, Sessitsch A. Harnessing the plant microbiome for sustainable crop production. Nat Rev Microbiol 2025; 23:9-23. [PMID: 39147829 DOI: 10.1038/s41579-024-01079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Global research on the plant microbiome has enhanced our understanding of the complex interactions between plants and microorganisms. The structure and functions of plant-associated microorganisms, as well as the genetic, biochemical, physical and metabolic factors that influence the beneficial traits of plant microbiota have also been intensively studied. Harnessing the plant microbiome has led to the development of various microbial applications to improve crop productivity in the face of a range of challenges, for example, climate change, abiotic and biotic stresses, and declining soil properties. Microorganisms, particularly nitrogen-fixing rhizobia as well as mycorrhizae and biocontrol agents, have been applied for decades to improve plant nutrition and health. Still, there are limitations regarding efficacy and consistency under field conditions. Also, the wealth of expanding knowledge on microbiome diversity, functions and interactions represents a huge source of information to exploit for new types of application. In this Review, we explore plant microbiome functions, mechanisms, assembly and types of interaction, and discuss current applications and their pitfalls. Furthermore, we elaborate on how the latest findings in plant microbiome research may lead to the development of new or more advanced applications. Finally, we discuss research gaps to fully leverage microbiome functions for sustainable plant production.
Collapse
Affiliation(s)
| | | | - Tanja Kostić
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | - Günter Brader
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | | |
Collapse
|
3
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Biology, classification, and entomopathogen-based management and their mode of action on Tuta absoluta (Meyrick) in Asia. Front Microbiol 2024; 15:1429690. [PMID: 39171273 PMCID: PMC11335496 DOI: 10.3389/fmicb.2024.1429690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Tuta absoluta, known as the South American tomato leaf miner, significantly impacts tomato plants (Solanum lycopersicum) economically on a global scale. This pest, belonging to the Gelechiidae family, is native to South America and was first identified in Peru in 1917. Since its discovery, T. absoluta has rapidly spread to Europe, Africa, and Asia, severely threatening tomato production in these regions. The widespread application of chemical pesticides against this pest has resulted in significant environmental harm, including contamination of soil and water, and has had negative effects on non-target species such as beneficial insects, birds, and aquatic life. Although substantial research has been conducted, biological control methods for T. absoluta remain insufficient, necessitating further study. This review covers the Biology, Classification, and Entomopathogen-Based Management of T. absoluta (Meyrick) in Asia. It provides essential insights into the pest's life cycle, ecological impacts, and the potential of entomopathogens as biocontrol agents. The detailed information presented aims to facilitate the development of sustainable pest control strategies, minimizing environmental impact and promoting the use of entomopathogens as viable alternatives to chemical pesticides in controlling T. absoluta insect pest.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Research Administration Section, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Research Administration Section, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Ma M, Luo J, Li C, Eleftherianos I, Zhang W, Xu L. A life-and-death struggle: interaction of insects with entomopathogenic fungi across various infection stages. Front Immunol 2024; 14:1329843. [PMID: 38259477 PMCID: PMC10800808 DOI: 10.3389/fimmu.2023.1329843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Insects constitute approximately 75% of the world's recognized fauna, with the majority of species considered as pests. Entomopathogenic fungi (EPF) are parasitic microorganisms capable of efficiently infecting insects, rendering them potent biopesticides. In response to infections, insects have evolved diverse defense mechanisms, prompting EPF to develop a variety of strategies to overcome or circumvent host defenses. While the interaction mechanisms between EPF and insects is well established, recent findings underscore that their interplay is more intricate than previously thought, especially evident across different stages of EPF infection. This review primarily focuses on the interplay between EPF and the insect defense strategies, centered around three infection stages: (1) Early infection stage: involving the pre-contact detection and avoidance behavior of EPF in insects, along with the induction of behavioral responses upon contact with the host cuticle; (2) Penetration and intra-hemolymph growth stage: involving the initiation of intricate cellular and humoral immune functions in insects, while symbiotic microbes can further contribute to host resistance; (3) Host insect's death stage: involving the ultimate confrontation between pathogens and insects. Infected insects strive to separate themselves from the healthy population, while pathogens rely on the infected insects to spread to new hosts. Also, we discuss a novel pest management strategy underlying the cooperation between EPF infection and disturbing the insect immune system. By enhancing our understanding of the intricate interplay between EPF and the insect, this review provides novel perspectives for EPF-mediated pest management and developing effective fungal insecticides.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
5
|
Zheng Y, Liu Y, Zhang J, Liu X, Ju Z, Shi H, Mendoza-Mendoza A, Zhou W. Dual role of endophytic entomopathogenic fungi: induce plant growth and control tomato leafminer Phthorimaea absoluta. PEST MANAGEMENT SCIENCE 2023; 79:4557-4568. [PMID: 37431839 DOI: 10.1002/ps.7657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Entomopathogenic fungi (EPF) are multifunctional microorganisms acting not only as biopesticides against insect pests but also as endophytes which regulate plant growth. The tomato leafminer, Phthorimaea absoluta (Tuta absoluta) is a devastating invasive pest of tomatoes worldwide. However, effective alternatives are needed for a sustainable management of this invasive pest. In this study, the functional effects of five EPF isolates Metarhizium flavoviride, M. anisopliae, M. rileyi, Cordyceps fumosorosea and Beauveria bassiana were evaluated on tomato growth promotion and pest protection against P. absoluta. RESULTS When directly sprayed with conidia, P. absoluta larvae showed high cumulative mortality of 100% to M. anisopliae under 1 × 108 conidia/mL, whereas M. flavoviride, B. bassiana, C. fumosorosea and M. rileyi caused cumulative mortality of 92.65%, 92.62%, 92.16% and 68.95%, respectively. Moreover, all five EPF isolates can successfully colonize tomato plants, whilst the colonization rate for each EPF depends on the inoculation method used. The most efficient inoculation method for M. flavoviride and M. rileyi was root dipping, for M. anisopliae and C. fumosorosea it was coating seed, and for B. bassiana it was foliage spraying. The highest plant colonization was obtained by M. flavoviride. Meanwhile, all these isolates promoted tomato plant growth upon inoculation. Furthermore, endophytic colonization of plants by the five EPF negatively affected the performance of P. absoluta, among them M. anisopliae and C. fumosorosea showed strong negative effects on the performance of P. absoluta. CONCLUSION Our results highlight the potential of incorporating entomopathogenic fungi as endophytes in integrated pest management practices to protect tomatoes against P. absoluta. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaqiang Zheng
- Resource and Utilisation Research Center of Medicinal Cordyceps, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yonglan Liu
- Resource and Utilisation Research Center of Medicinal Cordyceps, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jinyi Zhang
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Xiaolong Liu
- Resource and Utilisation Research Center of Medicinal Cordyceps, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhigang Ju
- Resource and Utilisation Research Center of Medicinal Cordyceps, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hongxi Shi
- Resource and Utilisation Research Center of Medicinal Cordyceps, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Artemio Mendoza-Mendoza
- Wine, Food and Molecular Biosciences Department, Lincoln University, Canterbury, New Zealand
| | - Wenwu Zhou
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|