2
|
Wamelink IJHG, Azizova A, Booth TC, Mutsaerts HJMM, Ogunleye A, Mankad K, Petr J, Barkhof F, Keil VC. Brain Tumor Imaging without Gadolinium-based Contrast Agents: Feasible or Fantasy? Radiology 2024; 310:e230793. [PMID: 38319162 PMCID: PMC10902600 DOI: 10.1148/radiol.230793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 02/07/2024]
Abstract
Gadolinium-based contrast agents (GBCAs) form the cornerstone of current primary brain tumor MRI protocols at all stages of the patient journey. Though an imperfect measure of tumor grade, GBCAs are repeatedly used for diagnosis and monitoring. In practice, however, radiologists will encounter situations where GBCA injection is not needed or of doubtful benefit. Reducing GBCA administration could improve the patient burden of (repeated) imaging (especially in vulnerable patient groups, such as children), minimize risks of putative side effects, and benefit costs, logistics, and the environmental footprint. On the basis of the current literature, imaging strategies to reduce GBCA exposure for pediatric and adult patients with primary brain tumors will be reviewed. Early postoperative MRI and fixed-interval imaging of gliomas are examples of GBCA exposure with uncertain survival benefits. Half-dose GBCAs for gliomas and T2-weighted imaging alone for meningiomas are among options to reduce GBCA use. While most imaging guidelines recommend using GBCAs at all stages of diagnosis and treatment, non-contrast-enhanced sequences, such as the arterial spin labeling, have shown a great potential. Artificial intelligence methods to generate synthetic postcontrast images from decreased-dose or non-GBCA scans have shown promise to replace GBCA-dependent approaches. This review is focused on pediatric and adult gliomas and meningiomas. Special attention is paid to the quality and real-life applicability of the reviewed literature.
Collapse
Affiliation(s)
- Ivar J. H. G. Wamelink
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Aynur Azizova
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Thomas C. Booth
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Henk J. M. M. Mutsaerts
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Afolabi Ogunleye
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Kshitij Mankad
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Jan Petr
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Frederik Barkhof
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| | - Vera C. Keil
- From the Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Center, VUMC Site, De Boelelaan 1117, Amsterdam 1081 HV, the
Netherlands (I.J.H.G.W., A.A., H.J.M.M.M., J.P., F.B., V.C.K.); Department of
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
(I.J.H.G.W., A.A., H.J.M.M.M., V.C.K.); School of Biomedical Engineering and
Imaging Sciences, King’s College London, London, United Kingdom (T.C.B.);
Department of Neuroradiology, King’s College Hospital, NHS Foundation
Trust, London, UK (T.C.B.); Department of Brain Imaging, Amsterdam Neuroscience,
Amsterdam, the Netherlands (H.J.M.M.M., F.B., V.C.K.); Department of Radiology,
Lagos State University Teaching Hospital, Ikeja, Nigeria Radiology (A.O.);
Department of Radiology, Great Ormond Street Hospital for Children, NHS
Foundation Trust, London, United Kingdom (K.M.); Institute of
Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf,
Dresden, Germany (J.P.); and Queen Square Institute of Neurology and Centre for
Medical Image Computing, University College London, London, United Kingdom
(F.B.)
| |
Collapse
|
3
|
Henssen D, Leijten L, Meijer FJA, van der Kolk A, Arens AIJ, Ter Laan M, Smeenk RJ, Gijtenbeek A, van de Giessen EM, Tolboom N, Oprea-Lager DE, Smits M, Nagarajah J. Head-To-Head Comparison of PET and Perfusion Weighted MRI Techniques to Distinguish Treatment Related Abnormalities from Tumor Progression in Glioma. Cancers (Basel) 2023; 15:cancers15092631. [PMID: 37174097 PMCID: PMC10177124 DOI: 10.3390/cancers15092631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The post-treatment imaging surveillance of gliomas is challenged by distinguishing tumor progression (TP) from treatment-related abnormalities (TRA). Sophisticated imaging techniques, such as perfusion-weighted magnetic resonance imaging (MRI PWI) and positron-emission tomography (PET) with a variety of radiotracers, have been suggested as being more reliable than standard imaging for distinguishing TP from TRA. However, it remains unclear if any technique holds diagnostic superiority. This meta-analysis provides a head-to-head comparison of the diagnostic accuracy of the aforementioned imaging techniques. Systematic literature searches on the use of PWI and PET imaging techniques were carried out in PubMed, Embase, the Cochrane Library, ClinicalTrials.gov and the reference lists of relevant papers. After the extraction of data on imaging technique specifications and diagnostic accuracy, a meta-analysis was carried out. The quality of the included papers was assessed using the QUADAS-2 checklist. Nineteen articles, totaling 697 treated patients with glioma (431 males; mean age ± standard deviation 50.5 ± 5.1 years) were included. The investigated PWI techniques included dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE) and arterial spin labeling (ASL). The PET-tracers studied concerned [S-methyl-11C]methionine, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) and 6-[18F]-fluoro-3,4-dihydroxy-L-phenylalanine ([18F]FDOPA). The meta-analysis of all data showed no diagnostic superior imaging technique. The included literature showed a low risk of bias. As no technique was found to be diagnostically superior, the local level of expertise is hypothesized to be the most important factor for diagnostically accurate results in post-treatment glioma patients regarding the distinction of TRA from TP.
Collapse
Affiliation(s)
- Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, 6525 GA Nijmegen, The Netherlands
| | - Lars Leijten
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, 6525 GA Nijmegen, The Netherlands
| | - Anja van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, 6525 GA Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Anne I J Arens
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mark Ter Laan
- Radboudumc Center of Expertise Neuro-Oncology, 6525 GA Nijmegen, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert J Smeenk
- Radboudumc Center of Expertise Neuro-Oncology, 6525 GA Nijmegen, The Netherlands
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anja Gijtenbeek
- Radboudumc Center of Expertise Neuro-Oncology, 6525 GA Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elsmarieke M van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Daniela E Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
- Medical Delta, 2629 JH Delft, The Netherlands
| | - James Nagarajah
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|