1
|
Wadowski P, Juszczak M, Woźniak K. NRF2 Modulators of Plant Origin and Their Ability to Overcome Multidrug Resistance in Cancers. Int J Mol Sci 2024; 25:11500. [PMID: 39519053 PMCID: PMC11547051 DOI: 10.3390/ijms252111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer is one of the most common causes of death in the world. Despite the fact that there are many types of therapies available, cancer treatment remains a major challenge. The main reason for the ineffectiveness of chemotherapy is the acquisition of multidrug resistance (MDR) by cancer cells. One of the factors responsible for the acquisition of MDR is the NRF2 transcription factor, which regulates the expression of proteins such as HO-1, NQO1, MRP1, MRP2, and GST. In normal cells, NRF2 is the first line of defense against oxidative stress, thereby preventing carcinogenesis. Still, its hyperactivation in cancer cells causes them to acquire MDR, which significantly reduces or eliminates the effectiveness of chemotherapy. Considering the important role NRF2 plays in the acquisition of MDR, its modulators and, above all, inhibitors are being sought after, including among compounds of plant origin. NRF2 inhibition may prove to be a key element of anticancer therapy. This review summarizes the current state of knowledge about plant NRF2 inhibitors and presents the effects of their use in overcoming MDR in cancer.
Collapse
Affiliation(s)
- Piotr Wadowski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Escuder-Rodríguez JJ, Liang D, Jiang X, Sinicrope FA. Ferroptosis: Biology and Role in Gastrointestinal Disease. Gastroenterology 2024; 167:231-249. [PMID: 38431204 PMCID: PMC11193643 DOI: 10.1053/j.gastro.2024.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Ferroptosis is a form of nonapoptotic cell death that involves iron-dependent phospholipid peroxidation induced by accumulation of reactive oxygen species, and results in plasma membrane damage and the release of damage-associated molecular patterns. Ferroptosis has been implicated in aging and immunity, as well as disease states including intestinal and liver conditions and cancer. To date, several ferroptosis-associated genes and pathways have been implicated in liver disease. Although ferroptotic cell death is associated with dysfunction of the intestinal epithelium, the underlying molecular basis is poorly understood. As the mechanisms regulating ferroptosis become further elucidated, there is clear potential to use ferroptosis to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota
| | - Deguang Liang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Frank A Sinicrope
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota.
| |
Collapse
|
3
|
Yu X, He Z, Wang Z, Ke S, Wang H, Wang Q, Li S. Brusatol hinders the progression of bladder cancer by Chac1/Nrf2/SLC7A11 pathway. Exp Cell Res 2024; 438:114053. [PMID: 38663476 DOI: 10.1016/j.yexcr.2024.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Bladder cancer is a common tumor that impacts the urinary system and marked by a significant fatality rate and an unfavorable prognosis. Promising antineoplastic properties are exhibited by brusatol, which is obtained from the dried ripe fruit of Brucea javanica. The present study aimed to evaluate the influence of brusatol on the progression of bladder cancer and uncover the molecular mechanism involved. We used Cell Counting Kit-8, colony formation and EdU assays to detect cell numbers, viability and proliferation. We used transwell migration assay to detect cell migration ability. The mechanism of brusatol inhibition of bladder cancer proliferation was studied by flow cytometry and western blotting. It was revealed that brusatol could reduce the viability and proliferation of T24 and 5637 cells. The transwell migration assay revealed that brusatol was able to attenuate the migration of T24 and 5637 cells. We found that treatment with brusatol increased the levels of reactive oxygen species, malondialdehyde and Fe2+, thereby further promoting ferroptosis in T24 and 5637 cells. In addition, treatment with RSL3 (an agonistor of ferroptosis) ferrostatin-1 (a selective inhibitor of ferroptosis) enhanced or reversed the brusatol-induced inhibition. In vivo, treatment with brusatol significantly suppressed the tumor growth in nude mice. Mechanistically, brusatol induced ferroptosis by upregulating the expression of ChaC glutathione-specific gamma-glutamylcyclotransferase (Chac1) and decreasing the expression of SLC7A11 and Nrf2 in T24 and 5637 cells. To summarize, the findings of this research demonstrated that brusatol hindered the growth of bladder cancer and triggered ferroptosis via the Chac1/Nrf2/SLC7A11 pathway.
Collapse
Affiliation(s)
- Xi Yu
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Ziqi He
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Departments of urology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhong Wang
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei 430060, PR China.
| | - Shuai Ke
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Departments of urology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Huaxin Wang
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qinghua Wang
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Department of Urology, Tongji Hospital, Tongji University School of Medicine, 200065 Shanghai, China
| | - Shenglan Li
- Departments of Anesthesiology of Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Department of Radiography, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
4
|
Li X, Jiang Y, Wang Y, Li N, Zhang S, Lv K, Jia R, Wei T, Li X, Han C, Lin J. KLF4 suppresses anticancer effects of brusatol via transcriptional upregulating NCK2 expression in melanoma. Biochem Pharmacol 2024; 223:116197. [PMID: 38583810 DOI: 10.1016/j.bcp.2024.116197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Brusatol (Bru), a main extract from traditional Chinese medicine Brucea javanica, has been reported to exist antitumor effect in many tumors including melanoma. However, the underlying mechanism in its anti-melanoma effect still need further exploration. Here, we reported that the protein expression of KLF4 in melanoma cells were significantly downregulated in response to brusatol treatment. Overexpression of KLF4 suppressed brusatol-induced melanoma cell apoptosis; while knockdown of KLF4 enhanced antitumor effects of brusatol on melanoma cells not only in vitro but also in vivo. Further studies on the mechanism revealed that KLF4 bound to the promoter of NCK2 directly and facilitated NCK2 transcription, which suppressed the antitumor effect of brusatol on melanoma. Furthermore, our findings showed that miR-150-3p was dramatically upregulated under brusatol treatment which resulted in the downregulation of KLF4. Our results suggested that the miR-150-3p/KLF4/NCK2 axis might play an important role in the antitumour effects of brusatol in melanoma.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China; Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116044, PR China
| | - Yuankuan Jiang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Ying Wang
- Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116044, PR China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, PR China
| | - Shumeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Kejia Lv
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Renchuan Jia
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Tianfu Wei
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Xiaojie Li
- College of Stomatology Dalian Medical University, Dalian 116044, PR China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell of Dalian Medical University, Dalian 116044, PR China.
| | - Jingrong Lin
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
5
|
Zhu X, Huang N, Ji Y, Sheng X, Huo J, Zhu Y, Huang M, He W, Ma J. Brusatol induces ferroptosis in oesophageal squamous cell carcinoma by repressing GSH synthesis and increasing the labile iron pool via inhibition of the NRF2 pathway. Biomed Pharmacother 2023; 167:115567. [PMID: 37742602 DOI: 10.1016/j.biopha.2023.115567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
Brusatol (Bru), a bioactive compound found in Brucea sumatrana, exerts antitumour effects on several malignancies. However, the role and molecular mechanism of Bru in squamous cell carcinoma of the oesophagus (ESCC) remain unclear. Here, we found that Bru decreased the survival of ESCC cells. Subsequently, the ferroptosis inhibitors, deferoxamine and liproxstatin-1, rescued Bru-induced cell death, indicating that ferroptosis plays a major role in Bru-induced cell death. Furthermore, Bru promoted lipid peroxidation, glutathione (GSH) depletion, and ferrous iron overload in vitro. Consistent with these in vitro results, Bru significantly inhibited tumour growth in KYSE150 xenograft nude mice by triggering ferroptosis. Mechanistically, nuclear factor E2-related factor 2 (NRF2) inactivation via increased ubiquitin-proteasome degradation was found to be a vital determinant of ferroptosis induced by Bru. Notably, Bru significantly decreases GSH synthesis, iron storage, and efflux by downregulating the expression of NRF2 target genes (glutamate-cysteine ligase catalytic subunit (GCLC), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH1), and solute carrier family 40 member 1 (SLC40A1)), resulting in the accumulation of lethal lipid-based reactive oxygen species (ROS) and intracellular enrichment of chelated iron. Taken together, our findings indicate that ferroptosis is a novel mechanism underlying Bru-induced antitumour activity and will hopefully provide a valuable compound for ESCC treatment.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Nannan Huang
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yao Ji
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xinling Sheng
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Juanjuan Huo
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yuan Zhu
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Menghuan Huang
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wei He
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Junting Ma
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
6
|
Suwattanasophon C, Mistlberger-Reiner A, Alberdi-Cedeño J, Pignitter M, Somoza V, König J, Lamtha T, Wanaragthai P, Kiriwan D, Choowongkomon K. Identification of the Brucea javanica Constituent Brusatol as a EGFR-Tyrosine Kinase Inhibitor in a Cell-Free Assay. ACS OMEGA 2023; 8:28543-28552. [PMID: 37576644 PMCID: PMC10413460 DOI: 10.1021/acsomega.3c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Inhibitors of the tyrosine kinase (TK) activity of the epidermal growth factor receptor (EGFR) are routinely used in cancer therapy. However, there is a need to discover a new TK inhibitor. This study evaluated extracts from Brucea javanica and its components for their potential as novel EGFR-TK inhibitors. The cytotoxic effect of a g aqueous extract and its fractions was assessed by MTT assays with A549 lung cancer cells. The two fractions with the highest cytotoxicity were analyzed by LC/MS and 1H NMR. Brusatol was identified as the main constituent of these fractions, and its cytotoxic and pro-apoptotic activities were confirmed in A549 cells. To elucidate the inhibitory activity of brusatol against EGFR-TK, a specific ADP-GloTM kinase assay was used. In this assay, the IC50 value for EGFR-TK inhibition was 333.1 nM. Molecular dynamic simulations and docking experiments were performed to identify the binding pocket of brusatol to be located in the intracellular TK-domain of EGFR. This study demonstrates that brusatol inhibits EGFR-TK and therefore harbors a potential as a new therapeutic drug for the therapy of EGFR-depending cancers.
Collapse
Affiliation(s)
- Chonticha Suwattanasophon
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, 10900 Bangkok, Thailand
| | - Agnes Mistlberger-Reiner
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jon Alberdi-Cedeño
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food
Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV-EHU), Paseo de la Universidad no 7, 01006 Vitoria-Gasteiz, Spain
| | - Marc Pignitter
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Veronika Somoza
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Nutritional
Systems Biology, Technical University of
Munich, 85354 Freising, Germany
| | - Jürgen König
- Department
of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Thomanai Lamtha
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, 10900 Bangkok, Thailand
| | - Panatda Wanaragthai
- Interdisciplinary
Program of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, 10900 Bangkok, Thailand
| | - Duangnapa Kiriwan
- Interdisciplinary
Program of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, 10900 Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, 10900 Bangkok, Thailand
| |
Collapse
|
7
|
Li J, Zhang J, Zhu Y, Afolabi LO, Chen L, Feng X. Natural Compounds, Optimal Combination of Brusatol and Polydatin Promote Anti-Tumor Effect in Breast Cancer by Targeting Nrf2 Signaling Pathway. Int J Mol Sci 2023; 24:ijms24098265. [PMID: 37175972 PMCID: PMC10179160 DOI: 10.3390/ijms24098265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has been clearly recognized as a heterogeneous tumor with the worst prognosis among the subtypes of breast cancer (BC). The advent and application of current small-molecule drugs for treating TNBC, as well as other novel inhibitors, among others, have made treatment options for TNBC more selective. However, there are still problems, such as poor patient tolerance, large administration doses, high dosing frequency, and toxic side effects, necessitating the development of more efficient and less toxic treatment strategies. High expression of Nrf2, a vital antioxidant transcription factor, often promotes tumor progression, and it is also one of the most effective targets in BC therapy. We found that in MDA-MB-231 cells and SUM159 cells, brusatol (BRU) combined with polydatin (PD) could significantly inhibit cell proliferation in vitro, significantly downregulate the expression of Nrf2 protein as well as the expression of downstream related target genes Heme Oxygenase-1 (HO-1) and NAD(P)H dehydrogenase, quinone 1 (NQO1), and promote reactive oxygen species (ROS) levels to further strengthen the anti-tumor effect. Furthermore, we discovered in our in vivo experiments that by reducing the drug dosage three times, we could significantly reduce tumor cell growth while avoiding toxic side effects, providing a treatment method with greater clinical application value for TNBC treatment.
Collapse
Affiliation(s)
- Jing Li
- Shenzhen Laboratory of Tumor Cell Biology, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jianchao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zhu
- Shenzhen Laboratory of Tumor Cell Biology, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lukman O Afolabi
- Shenzhen Laboratory of Tumor Cell Biology, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
8
|
Beeraka NM, Zhang J, Zhao D, Liu J, A U C, Vikram Pr H, Shivaprakash P, Bannimath N, Manogaran P, Sinelnikov MY, Bannimath G, Fan R. Combinatorial Implications of Nrf2 Inhibitors with FN3K Inhibitor: In vitro Breast Cancer Study. Curr Pharm Des 2023; 29:2408-2425. [PMID: 37861038 DOI: 10.2174/0113816128261466231011114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Platinum derivatives are chemotherapeutic agents preferred for the treatment of cancers including breast cancer. Oxaliplatin is an anticancer drug that is in phase II studies to treat metastatic breast cancer. However, its usage is constrained by chemoresistance and dose-related side effects. OBJECTIVE The objective of this study is to examine the combinatorial efficacy of brusatol, an Nrf2 blocker, with oxaliplatin (a proven FN3K blocker in our study) in mitigating breast cancer growth in vitro. METHODS We performed cytotoxicity assays, combination index (CI) analysis, colony formation assays, apoptosis assays, and Western blotting. RESULTS Results of our study described the chemosensitizing efficacy of brusatol in combination with lowdose oxaliplatin against breast cancer through synergistic effects in both BT-474 and T47D cells. A significant mitigation in the migration rate of these cancer cells was observed with the combination regimen, which is equivalent to the IC-50 dose of oxaliplatin (125 μM). Furthermore, ROS-mediated and apoptotic modes of cell death were observed with a combinatorial regimen. Colony formation of breast cancer cell lines was mitigated with a combinatorial regimen of bursatol and oxaliplatin than the individual treatment regimen. FN3K expression downregulated with oxaliplatin in T47D cells. The mitigation of FN3K protein expression with a combination regimen was not observed but the Nrf2 downstream antioxidant signaling proteins were significantly downregulated with a combination regimen similar to individual drug regimens. CONCLUSION Our study concluded the combination efficacy of phytochemicals like brusatol in combination with low-dose oxaliplatin (FN3K blocker), which could enhance the chemosensitizing effect in breast cancer and minimize the overall dose requirement of oxaliplatin.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
| | - Chinnappa A U
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Xenone Healthcare Pvt. Ltd, #318, Third Floor, US Complex, Jasola, New Delhi 110076, India
| | - Priyanka Shivaprakash
- Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Namitha Bannimath
- Department of Pharmacology and Toxicology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Mikhail Y Sinelnikov
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
- Sinelab Biomedical Research Center, Minnesota 55905, USA
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
| |
Collapse
|
9
|
Yang Y, Wu H, Zou X, Chen Y, He R, Jin Y, Zhou B, Ge C, Yang Y. A novel synthetic chalcone derivative, 2,4,6-trimethoxy-4'-nitrochalcone (Ch-19), exerted anti-tumor effects through stimulating ROS accumulation and inducing apoptosis in esophageal cancer cells. Cell Stress Chaperones 2022; 27:645-657. [PMID: 36242757 PMCID: PMC9672279 DOI: 10.1007/s12192-022-01302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
Esophageal cancer has always been associated with poor prognosis and a low five-year survival rate. Chalcone, a flavonoid family member, has shown anti-tumor property in several types of cancer. However, few studies reported the potency and mechanisms of action of synthetic Chalcone derivatives against esophageal squamous cell carcinoma. In this study, we designed and synthesized a series of novel chalcone analogs and Ch-19 was selected for its superior anti-tumor potency. Results indicated that Ch-19 shows a dose- and time-dependent anti-tumor activity in both KYSE-450 and Eca-109 esophageal cancer cells. Moreover, treatment of Ch-19 resulted in the regression of KYSE-450 tumor xenografts in nude mice. Furthermore, we investigated the potential mechanism involved in the effective anti-tumor effects of Ch-19. As a result, we observed that Ch-19 treatment promoted ROS accumulation and caused G2/M phase arrest in both Eca-109 and KYSE-450 cancer cell lines, thereby resulting in cell apoptosis. Taken together, our study provided a novel synthetic chalcone derivative as a potential anti-tumor therapeutic candidate for treating esophageal cancer.
Collapse
Affiliation(s)
- Yan Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, Canada
| | - He Wu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiao Zou
- Department of Oncology and Hematology, The First People's Hospital of Taian, Taian, China
| | - Yongye Chen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Runjia He
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yibo Jin
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Bei Zhou
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunpo Ge
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Yun Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|