1
|
Ren Q, Qu L, Yuan Y, Wang F. Natural Modulators of Key Signaling Pathways in Skin Inflammageing. Clin Cosmet Investig Dermatol 2024; 17:2967-2988. [PMID: 39712942 PMCID: PMC11663375 DOI: 10.2147/ccid.s502252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Low-grade chronic inflammation without obvious infection is defined as "inflammageing" and a key driver of skin ageing. Although the importance of modulating inflammageing for treating skin diseases and restoring cutaneous homeostasis is increasingly being recognized. However, the mechanisms underlying skin inflammageing, particularly those associated with natural treatments, have not been systematically elucidated. This review explores the signaling pathways associated with skin inflammageing, as well as the natural plants and compounds that directly or indirectly target these pathways. Nine signaling pathways and 60 plants/constituents related to skin anti-inflammageing are discussed, exploring plant mechanisms to mitigate skin inflammageing. Common natural plants with anti-inflammageing activity are detailed by active ingredients, mechanisms, therapeutic potential, and quantitative effects on skin inflammageing modulation. This review strengthens our understanding of these botanical ingredients as natural interventions against skin inflammageing and provides directions for future research.
Collapse
Affiliation(s)
- Qianqian Ren
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Yonglei Yuan
- Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, 201702, People’s Republic of China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| |
Collapse
|
2
|
Vijayan S, Margesan T. Comprehensive investigation of network pharmacology, computational modeling, and pharmacokinetic assessment to evaluate the efficacy of flavonoids in rheumatoid arthritis. Mol Divers 2024:10.1007/s11030-024-10989-4. [PMID: 39348084 DOI: 10.1007/s11030-024-10989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune disease characterized by inflammation and joint damage, imposing a significant burden on affected individuals worldwide. Flavonoids, a class of natural compounds abundant in various plant-based foods, have shown promising anti-inflammatory and immunomodulatory effects, suggesting their potential as therapeutic agents for RA. In this study, we conducted a comprehensive investigation of identified LCMS compounds utilizing network pharmacology, computational modeling, in silico approaches, and pharmacokinetic assessment to evaluate the efficacy of flavonoids in RA treatment. The study identified 5 flavonoid structures with common targets via LCMS and Integration of network pharmacology approaches enabled a comprehensive evaluation of the pharmacological profile of flavonoids in the context of RA treatment, guiding the selection of promising candidates for further experimental validation and clinical development. The top 10 targets were AKT1, PI3KR1, CDK2, EGFR, CDK6, NOS2, FLT3, ALOX5, CCNB1, and PTPRS via PPI network. The investigation emphasized several pathways, including the AGE-RAGE signaling pathway, resistance to EGFR tyrosine kinase inhibitors, the PI3K-AKT signaling network, and the Rap 1 signaling pathway. In silico studies estimated binding affinities that ranged from - 7.0 to - 10.0 kcal/mol. Schaftoside and Vitexin showed no toxicity in computational approach and found suitable for further investigations. Overall, our study underscores the potential of flavonoids as therapeutic agents for RA and highlights the utility of integrative approaches combining network pharmacology, computational modeling, in silico methods, and pharmacokinetic assessment in drug discovery and development processes.
Collapse
Affiliation(s)
- Sukanya Vijayan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Thirumal Margesan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
de Souza IR, Iulini M, Galbiati V, Rodrigues AC, Gradia DF, Andrade AJM, Firman JW, Pestana C, Leme DM, Corsini E. The evaluation of skin sensitization potential of the UVCB substance diisopentyl phthalate by in silico and in vitro methods. Arch Toxicol 2024; 98:2153-2171. [PMID: 38806720 PMCID: PMC11169023 DOI: 10.1007/s00204-024-03738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 05/30/2024]
Abstract
Diisopentyl phthalate (DiPeP) is primarily used as a plasticizer or additive within the production of polyvinyl chloride (PVC), and has many additional industrial applications. Its metabolites were recently found in urinary samples of pregnant women; thus, this substance is of concern as relates to human exposure. Depending upon the nature of the alcohol used in its synthesis, DiPeP may exist either as a mixture consisting of several branched positional isomers, or as a single defined structure. This article investigates the skin sensitization potential and immunomodulatory effects of DiPeP CAS No. 84777-06-0, which is currently marketed and classified as a UVCB substance, by in silico and in vitro methods. Our findings showed an immunomodulatory effect for DiPeP in LPS-induced THP-1 activation assay (increased CD54 expression). In silico predictions using QSAR TOOLBOX 4.5, ToxTree, and VEGA did not identify DiPeP, in the form of a discrete compound, as a skin sensitizer. The keratinocyte activation (Key Event 2 (KE2) of the adverse outcome pathway (AOP) for skin sensitization) was evaluated by two different test methods (HaCaT assay and RHE assay), and results were discordant. While the HaCaT assay showed that DiPeP can activate keratinocytes (increased levels of IL-6, IL-8, IL-1α, and ILA gene expression), in the RHE assay, DiPeP slightly increased IL-6 release. Although inconclusive for KE2, the role of DiPeP in KE3 (dendritic cell activation) was demonstrated by the increased levels of CD54 and IL-8 and TNF-α in THP-1 cells (THP-1 activation assay). Altogether, findings were inconclusive regarding the skin sensitization potential of the UVCB DiPeP-disagreeing with the results of DiPeP in the form of discrete compound (skin sensitizer by the LLNA assay). Additional studies are needed to elucidate the differences between DiPeP isomer forms, and to better understand the applicability domains of non-animal methods in identifying skin sensitization hazards of UVCB substances.
Collapse
Affiliation(s)
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Ana Carolina Rodrigues
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Fiori Gradia
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Anderson J M Andrade
- Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Cynthia Pestana
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
4
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Akhtar S, Alsayed RKME, Ahmad F, AlHammadi A, Al-Khawaga S, AlHarami SMAM, Alam MA, Al Naama KAHN, Buddenkotte J, Uddin S, Steinhoff M, Ahmad A. Epigenetic control of inflammation in Atopic Dermatitis. Semin Cell Dev Biol 2024; 154:199-207. [PMID: 37120405 DOI: 10.1016/j.semcdb.2023.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Atopic dermatitis (AD), also known as atopic eczema, is a common but also complex chronic, itchy skin condition with underlying inflammation of the skin. This skin ailment is prevalent worldwide and affects people of all ages, particularly children below five years of age. The itching and resulting rashes in AD patients are often the result of inflammatory signals, thus necessitating a closer look at the inflammation-regulating mechanisms for putative relief, care and therapy. Several chemical- as well as genetically-induced animal models have established the importance of targeting pro-inflammatory AD microenvironment. Epigenetic mechanisms are gaining attention towards a better understanding of the onset as well as the progression of inflammation. Several physiological processes with implications in pathophysiology of AD, such as, barrier dysfunction either due to reduced filaggrin / human β-defensins or altered microbiome, reprograming of Fc receptors with resulting overexpression of high affinity IgE receptors, elevated eosinophil numbers or the elevated IL-22 production by CD4 + T cells have underlying epigenetic mechanisms that include differential promoter methylation and/or regulation by non-coding RNAs. Reversing these epigenetic changes has been verified to reduce inflammatory burden through altered secretion of cytokines IL-6, IL-4, IL-13, IL-17, IL-22 etc, with benefit against AD progression in experimental models. A thorough understanding of epigenetic remodeling of inflammation in AD has the potential of opening avenues for novel diagnostic, prognostic and therapeutic options.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
6
|
Bak SG, Lim HJ, Won YS, Park EJ, Kim YH, Lee SW, Oh JH, Kim JE, Lee MJ, Lee S, Lee SJ, Rho MC. Effect of Ampelopsis brevipedunculata (Maxim.) Trautv extract on a model of atopic dermatitis in HaCaT cells and mice. Food Sci Nutr 2023; 11:6616-6625. [PMID: 37823139 PMCID: PMC10563673 DOI: 10.1002/fsn3.3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
Ampelopsis brevipedunculata (Maxim.) Trautv. has been used for a long time as a folk remedy. According to studies, it possesses anti-inflammatory, antioxidant, and antibacterial properties. However, its effects on atopic dermatitis (AD) are poorly studied. Thus, we investigated the therapeutic effect of A. brevipedunculata (Maxim.) Trautv. extract (ABE-M) on 2,4-dinitrochlorobenzene (DNCB)-induced AD. For in vitro analysis, keratinocytes cell lines (HaCaT cells) were used. To evaluate the gene and protein expression levels of cytokines and chemokines, TNF-α/IFN-γ-stimulated HaCaT cells were treated with ABE-M. The cells and the supernatant were collected, then gene and protein levels were analyzed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay analysis. For in vivo analysis, BALB/c mice (6 weeks) were randomly separated into five groups (n = 5). The mice were applied DNCB and phosphate-buffered saline, dexamethasone (DX) or ABE-M (50, 100, and 200 mg/kg) was orally administrated for 28 days. At the end, ear tissues and blood were collected for histological analysis and evaluation of cytokines and chemokines. In keratinocytes, ABE-M inhibited the protein and mRNA levels of chemokines, and cytokines exposed by TNF-α/IFN-γ. Similarly, the expression of chemokines was suppressed by ABE-M in AD animal model induced by DNCB and the level of pro-inflammatory cytokines was decreased in a dose-dependent manner. Our research indicates that ABE-M could be a candidate material that can be used to improve skin immunity enhancement, health, and beauty.
Collapse
Affiliation(s)
- Seon Gyeong Bak
- Functional Biomaterial Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Jeongeup South Korea
| | - Hyung Jin Lim
- Functional Biomaterial Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Jeongeup South Korea
| | - Yeong-Seon Won
- Functional Biomaterial Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Jeongeup South Korea
| | - Eun Jae Park
- Functional Biomaterial Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Jeongeup South Korea
| | - Young Hee Kim
- Division of Biotechnology and Advanced Institute of Environment and Bioscience College of Environmental and Bioresource Sciences, Jeonbuk National University Iksan South Korea
| | - Seung Woong Lee
- Functional Biomaterial Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Jeongeup South Korea
| | - Je Hun Oh
- Ju Yeong NS Co., Ltd Seoul South Korea
| | | | | | - Soyoung Lee
- Functional Biomaterial Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Jeongeup South Korea
| | - Seung Jae Lee
- Functional Biomaterial Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Jeongeup South Korea
- Applied Biological Engineering, KRIBB School of Biotechnology University of Science and Technology Daejeon South Korea
| | - Mun Chual Rho
- Functional Biomaterial Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Jeongeup South Korea
| |
Collapse
|