1
|
Allam EAH, Sabra MS. Plant-based therapies for urolithiasis: a systematic review of clinical and preclinical studies. Int Urol Nephrol 2024; 56:3687-3718. [PMID: 39042342 DOI: 10.1007/s11255-024-04148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Urolithiasis, the formation of kidney stones, is a common and severe condition. Despite advances in understanding its pathophysiology, affordable treatment options are needed worldwide. Hence, the interest is in herbal medicines as alternative or supplementary therapy for urinary stone disease. This review explores the use of plant extracts and phytochemicals in preventing and treating urolithiasis. METHODS Following PRISMA standards, we systematically reviewed the literature on PubMed/Medline, focusing on herbal items evaluated in in vivo models, in vitro studies, and clinical trials related to nephrolithiasis/urolithiasis. We searched English language publications from January 2021 to December 2023. Studies assessing plant extracts and phytochemicals' therapeutic potential in urolithiasis were included. Data extracted included study design, stone type, plant type, part of plant used, solvent type, main findings, and study references. RESULTS A total of 64 studies were included. Most studies used ethylene glycol to induce hyperoxaluria and nephrolithiasis in rat models. Various extraction methods were used to extract bioactive compounds from different plant parts. Several plants and phytochemicals, including Alhagi maurorum, Aerva lanata, Dolichos biflorus, Cucumis melo, and quercetin, demonstrated potential effectiveness in reducing stone formation, size, and number. CONCLUSIONS Natural substances offer an alternative or supplementary approach to current treatments, potentially reducing pain and improving the quality of life for urolithiasis patients. However, further research is needed to clarify their mechanisms of action and optimize their therapeutic use. The potential of plant-based therapies in treating urolithiasis is promising, and ongoing research is expected to lead to treatment advancements benefiting patients globally.
Collapse
Affiliation(s)
- Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Egypt, 71526, Egypt
| |
Collapse
|
2
|
Noorulla K, Doyo Dalecha D, Jemal Haji M, S R, Arumugam M, Zafar A, Gadisa Gobena W, Mekit S, Haji Negawo H, Hussein M, Fekadu Demessie H, Yasir M. Syrupy herbal formulation of green bean pod extract of Phaseolus vulgaris L.: Formulation optimization by central composite design, and evaluation for anti-urolithiatic activity. Heliyon 2024; 10:e27330. [PMID: 38495171 PMCID: PMC10943400 DOI: 10.1016/j.heliyon.2024.e27330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
The green bean pods of Phaseolus vulgaris L. are traditionally used as a folk remedy for treating calcium oxalate kidney stones. The current research aimed to develop a syrup formulation containing green bean pod extract for anti-urolithiatic activity. The syrup was prepared using a simple blending method and optimized through a central composite design (CCD) with two independent variables: the ratio of pod juice (PJ) to sugar solution (SS) ranging from 1:0.5 to 1:1.5, and the percentage of CMC from 0.2% to 0.4% w/v. These variables were analyzed for their impact on viscosity (CP) and sedimentation percentage, helping to identify the best formulation out of 13 variants. The finalized formulation (F-opt) underwent assessment for physicochemical characteristics such as organoleptic properties, viscosity, density, sedimentation rate, and stability. Additionally, a microbiological assessment was performed utilizing the spread plate method. Further, it was evaluated for in vitro, ex vivo, and in vivo anti-urolithiatic activity in rat models for 28 days and compared with that of the reference standard (Cystone syrup). Additionally, acute toxicity was assessed in albino Swiss mice. Histopathological evaluations were then conducted on the kidneys of the Wistar rats that had been used for the in vivo studies, providing insight into the treatment effects on kidney tissue structure. The optimized formulation (F-opt) was a green, viscous, clear syrup with a pH of 5.8, a viscosity of 256.38 CP, a density of 1.31 g/ml, and a sedimentation rate of 0.69%. The optimized formulation was found to be stable, showing no significant changes in physicochemical and microbiological properties. The results of the in vitro, ex vivo, and in vivo anti-urolithiatic studies indicated that the optimized formulation effectively inhibited the aggregation of calcium oxalate. The acute toxicity studies revealed no mortality or adverse effects for both the optimized formulation and pure bean pod juice at a dose of 2000 mg/kg body weight. Histopathological examination revealed that rats treated with the optimized formulation exhibited a significant reduction in both the number and size of calcium oxalate deposits within various parts of the renal tubules. It can be concluded that the syrupy formulation of Phaseolus vulgaris L. green bean pod extract demonstrated significant anti-urolithiatic activity. This activity could be due to its diuretic properties and its ability to inhibit the formation of calcium oxalate crystals. However, limitations of the study included a lack of elucidation of the mechanism and limited generalizability of the findings.
Collapse
Affiliation(s)
- K.M. Noorulla
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Debesa Doyo Dalecha
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Misbahu Jemal Haji
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Roshan S
- Deccan School of Pharmacy, Darussalam Aghapura, Hyderabad, Telangana, India
| | - Manikandan Arumugam
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, Uttar Pradesh, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | | | - Shimelis Mekit
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Hussein Haji Negawo
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Mohammednur Hussein
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Hailu Fekadu Demessie
- Department of Public Health, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|