1
|
Li B, Li WG, Guo Y, Wang Y, Xu LY, Yang Y, Xu SG, Tan ZL, Mei YR, Wang KY. Integrating fractional amplitude of low-frequency fluctuation and functional connectivity to investigate the mechanism and prognosis of severe traumatic brain injury. Front Neurol 2023; 14:1266167. [PMID: 38145123 PMCID: PMC10748505 DOI: 10.3389/fneur.2023.1266167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Objective Functional magnetic resonance imaging (fMRI) has been used for evaluating residual brain function and predicting the prognosis of patients with severe traumatic brain injury (sTBI). This study aimed to integrate the fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) to investigate the mechanism and prognosis of patients with sTBI. Methods Sixty-five patients with sTBI were included and underwent fMRI scanning within 14 days after brain injury. The patient's outcome was assessed using the Glasgow Outcome Scale-Extended (GOSE) at 6 months post-injury. Of the 63 patients who met fMRI data analysis standards, the prognosis of 18 patients was good (GOSE scores ≥ 5), and the prognosis of 45 patients was poor (GOSE scores ≤ 4). First, we apply fALFF to identify residual brain functional differences in patients who present different prognoses and conjoined it in regions of interest (ROI)-based FC analysis to investigate the residual brain function of sTBI at the acute phase of sTBI. Then, the area under the curve (AUC) was used to evaluate the predictive ability of the brain regions with the difference of fALFF and FC values. Results Patients who present good outcomes at 6 months post-injury have increased fALFF values in the Brodmann area (7, 18, 31, 13, 39 40, 42, 19, 23) and decreased FC values in the Brodmann area (28, 34, 35, 36, 20, 28, 34, 35, 36, 38, 1, 2, 3, 4, 6, 13, 40, 41, 43, 44, 20, 28 35, 36, 38) at the acute phase of sTBI. The parameters of these alterations can be used for predicting the long-term outcomes of patients with sTBI, of which the fALFF increase in the temporal lobe, occipital lobe, precuneus, and middle temporal gyrus showed the highest predictive ability (AUC = 0.883). Conclusion We provide a compensatory mechanism that several regions of the brain can be spontaneously activated at the acute phase of sTBI in those who present with a good prognosis in the 6-month follow-up, that is, a destructive mode that increases its fALFF in the local regions and weakens its FC to the whole brain. These findings provide a theoretical basis for developing early intervention targets for sTBI patients.
Collapse
Affiliation(s)
- Biao Li
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Emergency, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wu-gen Li
- Department of Imaging, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yao Guo
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yang Wang
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-yang Xu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuan Yang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shi-guo Xu
- Department of Imaging, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zi-long Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu-ran Mei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai-yang Wang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Zheng R, Qi Z, Thibaut A, Wang Z, Xu Z, Di H, Wu X, Mao Y, Laureys S. Clinical application of neuromodulation therapy in patients with disorder of consciousness: A pooled analysis of 544 participants. NeuroRehabilitation 2023; 53:491-503. [PMID: 37927281 DOI: 10.3233/nre-230103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
BACKGROUND The number of patients with disorders of consciousness (DoC) has increased dramatically with the advancement of intensive care and emergency medicine, which brings tremendous economic burdens and even ethical issues to families and society. OBJECTIVE To evaluate the effectiveness of neuromodulation therapy for patients with DoC. METHODS First, we conducted a literature review of individual patient data (IPD) on PubMed, EMBASE, and Cochrane-controlled trials following PRISMA guidelines. Then, we collected neuromodulation cases from our institution. Finally, we conducted a pooled analysis using the participants from the medical literature (n = 522) and our local institutions (n = 22). RESULTS In this pooled analysis of 544 patients with DoC with a mean age of 46.33 years, our results revealed that patients have improved CRS-R scores [1.0 points (95% CI, 0.57-1.42)] after neuromodulation. Among them, patients have better effectiveness in traumatic than non-traumatic etiology (P < 0.05). The effectiveness of consciousness improvement could be affected by the age, baseline consciousness state, and duration of stimulation. Compared with non-invasive intervention, an invasive intervention can bring more behavioral improvement (P < 0.0001) to MCS rather than UWS/VS patients. Importantly, neuromodulation is a valuable therapy even years after the onset of DoC. CONCLUSION This pooled analysis spotlights that the application of neuromodulation can improve the behavioral performance of patients with DoC. A preliminary trend is that age, etiology, baseline consciousness state, and stimulation duration could impact its effectiveness.
Collapse
Affiliation(s)
- Ruizhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education's (MOE) Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education's (MOE) Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Aurore Thibaut
- GIGA Consciousness Research Unit, Coma Science Group, Liège University, Liège, Belgium
- GIGA Consciousness, Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education's (MOE) Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zeyu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education's (MOE) Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Haibo Di
- International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education's (MOE) Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education's (MOE) Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Steven Laureys
- GIGA Consciousness Research Unit, Coma Science Group, Liège University, Liège, Belgium
- GIGA Consciousness, Centre du Cerveau, Liège University Hospital, Liège, Belgium
- International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| |
Collapse
|